TECHNICAL MANUAL
OPERATOR, ORGANIZATIONAL, DIRECT SUPPORT AND
GENERAL SUPPORT MAINTENANCE
FOR

TARGET DESIGNATOR SET, ELECTRO-OPTICAL

AN/TVQ-2 (G/VLLD)
GROUND SUPPORT EQUIPMENT

(GROUND LASER LOCATOR DESIGNATOR)

This copy is a reprint which includes current pages from Changes 1 through 2.

OPERATOR, ORGANI ZATI ONAL, DI RECT SUPPORT
AND
GENERAL SUPPORT
MAI NTENANCE MANUAL
FOR
TARGET DESI GNATOR SET, ELECTRO OPTI CAL
AN/ TVQ- 2 (G/VLLD)
GROUND SUPPORT EQUI PMENT

TM 9-4931-477-14, 9 May 1984, is changed as follows:

1. Remove ol d pages and i nsert new pages as i ndi cated bel ow.
2. New or changed material is indi cated by a vertical bar in the margi n of the page.
3. When the material added or revi sed is extensive, only the chapter, section, paragraph, or table title is barred.
4. Added or revi sed ill ustrations are indicated by a vertical bar adj acent to the illustration identification number.
5. File this sheet in the front of the manual for reference purposes.

Renove Pages Insert Paqes
i and i i
3-1 and 3-2
B- 9/ (B-10 bl ank)
DA Form 2028-2
DA Form 2028-2
DA Form 2028-2
i and ii
3-1 and 3-2
B- 9/ B- 10 bl ank)
DA For m 2028-2
DA Form 2028-2
DA Form 2028-2

By Order of the Secretary of the Army:

GORDON R. SULLI VAN

General, United States Army
Official: Chief of Staff

Acting Administrative Assistant to the
Secretary of the Army

Distribution:
To be distributed in accordance with DA Form 12-32E, Block 1484, requirements for TM 9-4931-477-1, G/VLLD Ground Support Equipment.

LASER LIGHT - INVISIBLE

LASER BEAM IS DANGEROUS AND CAN CAUSE BLI NDNESS IF IT ENTERS THE EYE -- El THER DI RECTLY OR REFLECTED FROM A SH NY SURFACE.

TREAT THE G/VLLD AS A DI RECT FI RE WEAPON, LI KE A RI FLE. Unl ess you have a backstop it can be hazardous as far as 80 km

NEVER LOOK INTO LASER; assure it is al ways dangerous.
DO NOT AIM LASER at unprotected people, ani mals, or flat reflective surfaces.
WARN PERSONNEL before firing Iaser or operating the G/VLLD set.
OPERATE ONLY ON APPROVED LASER RANGES whi ch have been cleared of reflective obj ects.

DO NOT RELY SOLELY ON W NDOW COVER to stop the I aser beam
KEEP THE G VLLD EXTERNAL LENSES CLEAN; dirt or forei gn matter on the optical lenses can cause scattering of laser light.

ALLOW ONLY TRAI NED PERSONNEL to operate the G/VLLD set, unl ess properly supervi sed.
ALWAYS FOLLOW THE LASER RANGE SAFETY PROCEDURES OF AR 385-63 and TB MED 524,
APPROVED LASER GOGGLES are requi red ONLY for peopl e who may be exposed to the di rect I aser beam or its reflection froma flat shi ny surface. Goggl es should have a density of 5.5 at 1064 nm

OPTI CS WTH MAGNI FICATI ON CAPABI LITIES increase the power of the laser and increase the damage to personnel.

A LASER ATTENUATOR FI LTER is available for use on the G/VLLD set to reduce emission hazards. Even when using the attenuator filter a potential eye hazard still exists. See AR 385-63 for operating limitations.

LASER WEAPON - DISCIPLINE

DISCIPLINE LASER IS A TACTICAL WEAPON AND COUNTER- ORDNANCE CAN FOLLOW IT TO YOUR POSI TI ON.

NON-TACTI CAL USE IS STRI CTLY FORBI DDEN.
DESI GNATE ONLY ON COMMAND to reduce your vul nerability and extend battery operating time to a maxi mum

CHEMICAL

CLEAN NG SOLVENTS ARE EXTREMELY FLAMMABLE AND TOXI C. THEY CAN CAUSE DEATH IF FUMES ARE INHALED. WORK AREAS SHOULD BE WELLVENTI LATED.

ACCUMLATI ON OF FLAMMABLE GASES MAY RESULT IN AN EXPLOSI ON.
KEEP OPEN FLAMES AWAY when using flammable cleaning sol utions.

ELECTRICAL HAZARDOUS VOLTAGES CAN CAUSE SHOCK, DEATH, OR I NJ URY. USE EXTREME CAUTI ON WHEN PERFORM NG MEASUREMENTS WTH POWER ON. REMDVE PONER BEFORE PERFORM NG MAI NTENANCE.

ALL POWER MST BE REMDVED from Ground Support Equi prent before start of repl acement procedures.

HIGH PRESSURE HI GH PRESSURE GASEOUS NI TROGEN- OXYGEN IS USED TO PURGE AND FI LL THE LD/ R. WEAR FACE SHI ELD TO PROTECT FACE AND EYES. DO NOT POINT ANY PRESSURE OULET TOWARDS YOURSELF OR ANY OTHER PERSON. ESCAPI NG GAS MAY BLOW DI RT OR DUST I NTO THE AI R WHI CH MAY CAUSE BLI NDNESS.

THE NI TROGEN- OXYGEN GAS CYLI NDER MUST BE SECURELY FASTENED to prevent it from falling and becoming an ungui ded missile.

HANDLE COMPRESSED GAS CYLI NDERS CAREFULLY. They can expl ode, become projectiles, damage equi pment, and injure personnel.

SAFETY IN CASE OF AN ACCI DENT -- NOTI FY YOUR SUPERVI SOR I MMEDI ATELY AND OBTAI N MEDI CAL TREATMENT FOR ALL I NJ URI ES.

SEE FM 21-11 for general first aid data.
CONSULT MEDI CAL OFFI CER FOR TB MED 524 data concerning I aser medi cal practices.
REPORT TO YOUR COMMANDER IF YOU TH NK YOU HAVE BEEN HIT BY THE LASER BEAM You may need an eye examination.

OPERATOR, ORGANIZATIONAL, DIRECT SUPPORT
AND
GENERAL SUPPORT
MAINTENANCE MANUAL
FOR
TARGET DESIGNATOR SET, ELECTRO-OPTICAL
AN/TVQ-2 (G/VLLD)
GROUND SUPPORT EQUIPMENT

Abstract

REPORTI NG OF ERRORS You can hel p improve this manual by recommending improvements using DA Form 2028 (Recormended Changes to Publications and Bl ank Forms) or DA Form 2028-2 located in the back of the manual and mail direct to: Commander, U.S. Army Mssile Cormand, ATTN: AMSM - MMC-LS-LP Redst one Ar senal, Al abama 35898-5238. A reply will be furnished direct to you.

TABLE OF CONTENTS

> Title Page

CHAPTER 1 I NTRODUCTI ON .. 1 1-1

Section	GENERAL I NFORMATI ON	1-1
1-1	Scope	1-1
1-2	Mai ntenance Forns, Records, and Reports	1-1
1-3	Reporting Equipment I mprovement Recommendations (El R)	1-1
1-4	preparation for Storage or Shi prent	1-1
1-5	Destruction of Materiel to Prevent Enemy Use	1-
1-6	Nonencl ature Cross-Ref erence	1-2
1-7	Abbr evi at i ons/ Acr onyms/ Symbol s	1-3

Thi s manual supersedes TM 9-4931-477-14 dated 18 August 1983, incl udi ng al I changes.

TABLE OF CONTENTS - Continued

	Title	Page
Section II.	EQUl PMENT DESCRI PTI ON AND DATA	1-6
1-8	Ground Support Equi prent (GSE)	1-6
1-9	Faul t Locator	1-6
1-10	Remote Capabilities Tester (RCT)	1-10
1-11	RCT Cable VR	1-12
1-12	Purge and Fill Equi prent	1-12
1-13	EM Filter	1-14
1-14	Test Resolver	1-15
1-15	Battery Charger Cable	1-16
1-16	Power Mai nt enance Cable	1-17
1-17	HP Power Suppl y	1-18
1-18	Saf ety I nterlock	1-19
CHAPTER 2	OPERATI ON OF GROUND SUPPORT EQUI PMENT	2-1
Section 1.	FAULT LOCATOR	2-1
2-1	Scope	2-1
2-2	Theory of Oper ation	2-3
2-3	Controls and I ndi cators	2-6
2-4	Oper ating Instructions	2-8
2-5	Oper ation Under Unusual Conditions	2-10
Section II.	REMDTE CAPABI LI TI ES TESTER	2-11
2-6	Scope	2-11
2-7	Theory of Operation	2-11
2-8	Controls and Indi cators	2-13
2-9	Oper ating Instructions	2-15
2-10	Operation Under Unusual Conditions	2-15
Section III.	PURGE AND FI LL EQUI PMENT	2-16
2-11	Scope	2-16
2-12	Theory of Operation	2-16
2-13	Controls and I ndi cators	2-16
2-14	Operating Instructions	2-16
2-15	Oper ation Under Unusual Conditions	2-16
Section IV.	EM FI LTER AND POMER MAI NTENANCE CABLE	2-19
2-16	Scope	2-19
2-17	Theory of Operation	2-19
2-18	Controls and Indi cators	2-20
2-19	Operating Instructions	2-20
2-20	Operation Under Unusual Conditions	2-20
Section V.	TEST RESOLVER	2-22
2-21	Scope	2-22
2-22	Theory of Operation	2-22
2-23	Controls and Indi cators	2-22
2-24	Oper ating I nstructions	2-22
2-25	Operation Under Unusual Conditions .	2-22

TABLE OF CONTENTS - Conti nued

Title Page
Section VI. HP PONER SUPPLY 2-24
2-26 Scope 2-24
2-27 Theory of Operation 2-24
2-28 Controls and Indi cators 2-24
2-29 Operating Instructions 2-27
2-30 Operation Under Unusual Conditions 2-27
Section VII. SAFETY I NTER. OCK 2-28
Scope Theory of Oper ati on2-282-28
2-33 Control s and I ndi cat ors 2-29
2-34 Operating Instructions 2-29
2-35 Operation Under Unusual Conditions 2-29
CHAPTER 3 MAI NTENANCE 3-1

Section I. SERVI CE UPON RECEI PT OF MATERI EL | 3-1 |
| :--- |
| 3-1 |

3-1 General
3-1
3-2 Duties of Using Organization3-2
Section II. MAI NTENANCE SERVI CES 3-3
3-4 General
3-5 Mai nt enance Checks and Services 3-3
3-6 \quad Cl eani ng
3-7 Inspection 3-3
3-8 Pai nting 3-4
Secti on III. TROUBLESHOOTI NG 3-5
3-8.1 Gener al 3-5
3-10 Troubl eshooting Renote Capabilities Tester 3-6
3-11 Troubl eshooting Purge and Fill Equi pment
(3-12 Troubl eshooting Power Maintenance Cable and EM Filter 3-66

3-14 Troubl eshooting Battery Charger Cable

3-14 Troubl eshooting Battery Charger Cable 3-683-54
3-14. 1 Test and Troubl eshooting HP Power Supply 3-68.23-14.2 Troubl eshooting Saf et y Interlock
Section IV. REPAI R 3-69
3-15 General
3-16 Repair of Fault Locat or 3-69
3-17 Repair of Remote Capabilities Tester Components 3-80
3-18 Repair of Purge and Fill Equi pment 3-89
3-19 Repair of EM Filter3-89
3-20 Repair of Power Maintenance Cable 3-91
Repair of RCT Cable VR3-913-22 Repai r of Test Resol ver3-23 Repair of Battery Charger Cable3-913-91

TABLE OF CONTENTS - Conti nued
Title Page
Section IV. REPAI R - Continued
3-24 Repair of HP Power Supply 3-91
3-25 Repai r of Saf ety Interlock 3-91
APPENDI X A REFERENCES A-1
APPENDI X B MAI NTENANCE ALLOCATI ON CHART B-1
(B-1 Gener al B-1
B-2 Mai ntenance Functions B-1
B- 3 Expl anati on of Format B-2
APPENDI X C COMPONENTS OF END ITEM AND BASIC ISSUE ITEMS LISTS C-1
Section I. I NTRODUCTI ON C-1
C-1 Scope C-1
C-2 Gener al C-1
C-3 Expl anation of Col ums C-1
Section II. COMPONENTS OF END ITEM C-2
Section III. BASIC ISSUE ITEMS C-5
APPENDI X D EXPENDABLE/ DURABLE SUPPLI ES AND MATERI ALS LI ST D. 1
Secti on I. I NTRODUCTI ON D. 1
D-1 Scope D-1
D-2 Expl anation of Col ums D. 1
Section II. EXPENDABLE/DURABLE SUPPLIES AND MATERI ALS LIST D-2
$\frac{\text { APPENDI X }}{\mathrm{E}-1}$ W RI NG LI ST E-1
Scope E-1
APPENDI X F TORQUE TABLES F-1
F-1 Scope F-1
APPENDI X G ELECTRONIC SHOP SHELTER AN/ ASM 146C SAFETY I NTERLOCK G-1
G-1 Scope G-1
G-2 Saf ety Interlock Installation G-1
G-3 Saf et y Interlock Pre-Oper ational Check G-12
G-4 Troubl eshooting Saf ety I nterlock G-13

LIST OF ILLUSTRATIONS

Number	Title	Page
1-0	GSE	1-7
1-1	Faul t Locat or	1-9
1-2	RCT and RCT Cable VR	1-11
1-3	Purge and Fill Equi pment	1-13
1-4	EM Filter	1-14
1-5	Test Resolver	1-15
1-6	Battery Charger Cable	1-16
1-7	Power Mai nt enance Cabl e	1-17
1-8	HP Power Suppl y	1-18
1-9	Saf et y I nt erlock	1-20
2-1	Faul t Locator Block Di agram	2-4
2-2	Faul t Locator Controls and Indicators.	2-6
2-3	Fault Locator Interface	2-10
2-4	Renote Capabilities Tester Bl ock Diagram	2-12
2-5	Remote Capabilities Tester Controls and Indicators	2-13
2-6	Purge and Fill Equi pment Controls and Indi cators	2-18
2-7	EM Filter and Power Mai ntenance Cable Attachment to LD/R and HP Power Supply	2-19
2-8	EM Filter and Power Mai ntenance Cable Controls and Indicators	2-21
2-9	Test Resolver Controls and Indi cators	2-23
2-10	HP Power Supply Controls and Indicators	2-26
2-11	Saf et y Interlock Schematic	2-28
2-12	Saf ety Interlock Controls and Indi cators	2-30
3-0	Power Maintenance Cable Connect or P1 Pin Orientation	3-61
3-1	Faul t Locat or Component Layout	3-70
3-2	Fault Locat or Wire Harness Component Layout	3-72
3-3	Renote Capabilities Tester Panel Renoval	3-82
3-4	Renote Capabilities Tester Component Layout	3-84
3-5	Purge and Fill Equi pment Component Layout	3-90
3-6	Del et ed	
3-7	Del et ed	
C-1	Components of End Item	C-3
G-1	Positioning of 11509160 El ectrical Cabi net	G-6
G-2	Positioning of 11509159 El ectrical Cabi net	G 9
G 3	El ectrical Power Cable Fabrication	G-11
FO-1	Fault Locat or Functional Di agram	FO-1
FO-2	Fault Locat or Panel Component Layout	FO-2
FO3	Remote Capabilities Tester Schematic Di agram	FO-3

LIST OF TABLES

LIST Of TABLES - Continued

Nunber Title Page
3-36 Test Resol ver Troubl eshooting 3-66
3-37 Battery Charger Cable Miltimeter Test 3-683-38 HP Power Supply Test and Troubl eshooting3-68. 1
B-1 Maintenance Allocation Chart B- 4
B- 2 Tools and Test Equi pment Requi rements B- 9
C-1 Components of End Item List C-2
C-2 Basic Issue Itens List C-5
D-1 Expendable/Durable Supplies and Materials List D-2
E-1 Wring List for Fault Locator E-1]
E-2 Wiring List for Renote Capabilities Tester E-11
F-1 Fault Locator Torque Val ues F-1
F-2 Renote Capabilities Tester Torque Val ues F-2
G-1 Saf et y Interlock Components G-1Expendabl e/Durable Supplies and NaterialsG-3G-4
G-3Tool s and Test Equi pmentGEl ectromannetic Rel ay Wring ListG- 8
Sensitive Switch - Power Distribution Panel Wiring List G-10

CHAPTER 1

I NTRODUCTI ON

Section I. GENERAL I NFORMATI ON

1-1. SCOPE

This manual provides operator, organizational, and direct support/general support (DS/GS) instructions for maintenance and operation of the Ground Support Equipment (GSE) of the Target Desi gnat or Set, Electro-Optical, AN TVQ 2, al so referred to as Ground/ Vehi cular Laser Locat or Desi gnat or (G/VLLD). Theory of operation for the GSE and troubl eshooting procedures are al so contai ned in this manual. Alist of current References, the Mai ntenance Allocation Chart, the Components of End Item and Basic Issue Itens Lists, the Expendabl e/ Durable Supplies and Materials List, Wring Lists, Torque Tables, and installation and maintenance procedures for Electronic Shop Shel ter AN ASM 146C Saf ety Interlock are included in the appendices to this manual.

1-2. MA NTENANCE FORNG, RECORDS, AND REPORTS

a. General. All personnel and organizations responsible for operating or maintaining the GSE are responsible for the preparation and disposition of U.S. Army equi prent records.
b. Authorization Forms. Forms that are required for operation and mai ntenance of equi pment are listed and expl ai ned in DA PAM 738-750. A compl ete list of Department of the Army (DA) forns is given in DA PAM 25-30.

Reports of Accidents. Any accident that injures personnel or damages equi pment shall be reported as required by AR 385-40.

1-3. REPORTI NG EQU PMENT I MPROVEMENT RECOMENDATI ONS (EI R)

If your equi pment needs improvement, let us know. Send us an El R. You, the user, are the onl y one who can tell us what you don't like about your equi pment. Let us know why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to the address stated in DA PAM 738-750.

1-4. PREPARATI ON FOR STORAGE OR SH PMENT

No special procedures are requi red.

1-5. DESTRUCTI ON OF MATERI EL TO PREVENT ENEMY USE

No special procedures for destruction of the GSE are required. Evacuation rather than destruction, whenever possible, is first priority.

1-6. NOMENCLATURE CROSS- REFERENCE

Common names used in this manual are listed in Table 1-1.

Table 1-1. Nomencl at ure Cross-Ref erence

Offici al Nomencl at ure	Part Number	Common Name
Adapt er Assentoly, Purging	11507835	Purge Val ve Adapter
Cabl e Assentlo y, Charger, Battery	13034390	Battery Charger Cable
Cable Assently, Power	11507839	Power Cable MR
Cable Assenbly, Remote Capabilities Tester	11559506	RCT Cable UR
Cable Assentbly, Test	11508261	Test Cable VI
Case, Combi nation	11507842	Case
Case, Conbi ned - Renote Capabilities Tester	11559504	Conbi ned Case
Charging Assentlo y, Gas	13012630	Hi gh Pressure Gage
Circuit Card Assentbly - Fault Locator, Logic	13160370	Logic Card Al
EM Filter Assentoly	11559640	EM Filter
Faul t Locator Panel Assembly	11507820	Panel
G/ VLLD Ground Support Equi prent	13090516	Ground Support Equi prent or GSE
HP 62683 DC Power Suppl y	62686010-026	HP Power Supply
Panel Assently, Remote Capabilities Tester	11559501	RCT Panel
Renote Capabilities Tester	11559500	RCT
Resol ver Assently y, Gi mbal Cal i br ation	11508483	Test Resol ver
Target Desi gnat or Set, El ectroOpt i cal AN TVQ-2 (G/VLLD)	13090500	G VLLD
Wiring Harness, Branched - Fault Locat or	11507845	Har ness

1-7. ABBREV ATI ONS/ ACRONYMS/ SYMBOLS

Abbreviations/acronynฐ/symbol s used in this manual are defined in Table 1-2.

Table 1-2. Li st of Abbrevi ations/Acronyms/Synbol s

Abbr evi ati on	Definition	Abbr evi ation	Definition
A	Ampere	DA	Department of the Army
ac	alternating current	dc	di rect current
amp	amper age	DES	DESi gnate
ar	as requi red	DMD	Digital Message
assy	assentbly		Devi ce
AZ	Azi muth	DMM	Digital MltiMeter
AZ AD	Azi muth Adj ust	DS/ GS	Direct Support/ General Support
BII	Basic Issue Itens		
bt ${ }^{\text {l }}$	bottle	еа	each
		EL	ELevation
C	Cel si us		
CAGEC	Commercial And	EM	El ect romagnetic I nt erference
	Gover nment Entity Code	ESDS	El ect roSt atic- Discharge Sensitive
CATH	Cat hode	EXT	EXTernal
CCW	count er cl ockwi se	F	Fahr enhei t
CMD	CoMmanD	F/T	Fl ashTube
CMPTR	CoMPuTeR	FI ST	Fire Support Team
COEI	Components of End Item	f t	foot
COM	COMmon	G/ VLLD	Ground/ Vehi cul ar Laser Locator
\cos	CoSi ne		Desi gnat or
CW	cl ockwi se	gal	gal I on
cyl	cyl i nder	GSE	Ground Support Equi prent

Tabl e 1-2. Li st of Abbrevi ations/Acronyns/Synbol s - Conti nued

Abbrevi ation	Definition	Abbr evi ation	Definition
HP	Hew ett-Packard	PFN	Pul se Forming Net work
HVPS	Hi gh Voltage Power suppl y	pr	pai r
Hz	Hertz (cycles per second)	PRF	Pul se Repetition Fr equency
in.	i nch	PS	Power Supply
1 b	pound	$0 / 5$	Q-Switch
LD/R	Laser Desi gnat or/ Rangef i nder	qt	quart
LED	Li ght Emitting Diode	QTY	QuanTi tY
M	Met er	RCT	Remote Capabilities Tester
MAX	MAXi mum	REF	REFer ence
M L	M LI ir radi an (Angle equal to $1 / 6400$ of 360°)	REQ RNG	REQui red RaNGe
MOS	Mlitary Occupati onal Speci al ty	RSLVR RTN	ReSoLVeR ReTur N
N_{2}	Nitrogen gas	SEL	SELect
No.	Number	SHLD	SHi eLD
NORM	NORM ${ }^{\text {a }}$	SIN	SINe
NSN	Nat i onal St ock Number	SW	SW t ched
NSNL	No Stock Number Li sted	TA TAMMS	Test Access The Army Mai ntenance Management System
OVERTEMP oz	OVERTEMPer at ure ounce	TMDE	Test, Measurement, and Di agnostic Equi prent
PAM	PAMphl et		

Tabl e 1-2. Li st of Abbrevi ations/Acronyns/Synbol s - Conti nued

Abbrevi ation	Definition	Abbr evi ation	Definition
TOE/ MTOE	Table of	TRI G	TRI Gger
	Organi zati on and Equi pment/	TU	Traversing Unit
	Mbdi fication	TV	Traversing Unit
	Table of	TYP	TYPi cal
	Organi zati on and Equi prent	U/ M	Unit of Measure
TOR	Turn- On Reset	V	Vol t
TP	Test Point	0	degrees
TPG	Ti me Program Gain		

1-8. GROUND SUPPORT EQU PMENT (GSE)

Characteristics. The GSE (Figure 1-0 is used for direct support/general support mai ntenance of El ectro-Optical Target Desi gnat or Set AN/TVQ 2 (G/VLLD). The GSE consists of the following itens:
(1) Fault Locator (incl udes Test Cable W1 and Power Cable WR)
(2) Renote Capabilities Tester (RCT)
(3) RCT Cable VR
(4) *Gas Charging Assenbl y
(5) *Purge Val ve Adapter
(6) *Fill Val ve Extensi on
(7) *Hi gh Pressure Gage
(8) EM Filter
(9) Test Resol ver
(10) Battery Charger Cable
(11) Power Mai nt enance Cable
(12) HP Power Suppl y
(13) Saf ety Interlock

* Purge and Fill Equi pment
b. Features and Capabilities.
(1) Fault Locator, RCT, RCT Cable VR, EM Filter, Test Resol ver, Power Mai nt enance Cable, and HP Power Supply are used to test and troubl eshoot G/VLLD el ectronic circuitry.
(2) Gas Charging Assenbl y, Purge Val ve Adapter, Fill Val ve Extensi on, and Hi gh Pressure Gage are used to purge and fill G/VLLD with nitrogen gas.
(3) Battery Charger Cable is used with Battery Charger PP-7286/U (not part of GSE) to charge BB-704/U G VLLD batteries.
(4) Saf et y Interlock (i nstalled into El ectronic Shop Shel ter AN ASM 146C) protects personnel entering shelter from G/VLLD I aser hazard by di sabling G/VLLD laser whenever shelter door is opened.

1-9. FAULT LOCATOR

a. Characteristics. The Fault Locator (Figure 1-1) is a self-contai ned assenbly consisting of the Fault Locator, Test Cable W, Power Cable WR, and Cover. The wei ght and di mensions of the Fault Locator are as follows:

Wei ght: 25 pounds
Hei ght: 10.75 inches
W dth: $\quad 12.00$ inches
Length: 18.00 inches

Fi gure 1-1. Fault Locator

b. Features and Capabilities.

(1) I nner Lid in Cover provides storage space for Test Cable V1 and Power Cable WR.
(2) Provi des same readouts ($A Z, R N G, E L$) as LD/R eyepi ece.
(3) Provi des remote control of LD/R firing. Remote INHBIT switches (LASER S1 and HVPS S8) permit troubl eshooting of circuits in static conditions.
(4) Provi des a meter to monitor all power forms.
(5) Provi des test point connectors to monitor signals incl uding si gnal s input to the meter.
(6) Operates from 115V, 60 to 400 Hz .
(7) Contai ns I amp test for panel indi cators.
(8) Tests range capability of LD/R by simlating I aser pulse reflection si gnal.

1-10. REMOTE CAPABI LITIES TESTER (RCT)

Characteristics. The RCT (Figure 1-2) is a self-contai ned, hardwi red, passive-switching test set consisting of the RCT Panel, Case Cover, and Conbined Case. The wei ght and dimensions of the RCT are as follows:

Wei ght:	3 pounds
Hei ght:	3.00 inches
W dt h:	6.16 inches
Lengt h:	13.66 inches

b. Features and Capabilities.
(1) Si mul ates FIST Vehicle/ LD/R interface for fault isol ation of LD/R.
(2) Used with G/VLLD Fault Locat or for fault isol ation of LD/R repl aceable subassentbl i es.

Fi gure 1-2. RCT and RCT Cable VR

1-11. RCT CABLE VR
a. Characteristics. RCT Cable U2 Figure 1-2) is approximately 12.5 feet long.
b. Features and Capabilities. Connects RCT to LD/R. Connector VRPI mates with RCT connector Jl. Connector VRP2 mates with LD/R connector 1 J. 7.

1-12. PUR6E AND FILL EQU PNENT

Characteristics. The Purge and Fill Equi pment (Figure 1-3) consists of the Gas ${ }^{\text {ºn }}$ Charging Assembly, Purge Val ve Adapter, Fill Val ve Extension, and High Pressure Gage.
b. Features and Capabilities.
(1) Provi des purging and filling of LD/R at hi gh and low pressure.
(2) Checks for leaks in LD/R at low pressure purge and fill.
(3) Gas Charging Assembly regul ates pressure and flow of nitrogen gas into LD/R during high- and low-pressure purge and fill procedures.
(4) Purge Val ve Adapter connects Gas Charging Assenbly to LD/R I ow- pressure purge and fill port for low-pressure purge and fill procedures.
(5) Fill Val ve Extensi on connects Gas Charging Assently y to LD/R check val ve for hi gh- pressure purge and fill and depressurization procedures.
(6) High Pressure Gage is used to measure nitrogen pressure in LD/R. Gas Charging Assently y can al so be used to check nitrogen gas pressure but High Pressure Gage is preferred because less nitrogen gas is lost in the checking process.

Figure 1-3. Purge and Fill Equi prent

1-13. EM FILTER

a. Characteristics. The approxi mate weight and di mensions of the EM Filter Fi qure 1-4) are as follows:

Wei ght:	3.5 pounds
Hei ght:	3.5 inches
W dt h:	4.0 inches
Lengt h:	9.0 inches

b. Features and Capabilities.
(1) An el ectromannetic interference device that filters and regul ates power from external power sources (vehicle power or HP Power Supply).
(2) Same size and shape as battery.
(3) Pi vot bracket and pin hole allow nounting on LD/R in same way as battery.
(4) 3-hol e connector mates with LD/R power connector.
(5) Used with NATO Connector, Slave Cable, and Vehicle Power Cable to provide alternate G/VLLD power source of +24 V for vehicle power operation.
(6) Connector Jl mates with Power Mai ntenance Cable connector P1 to provi de alternate G/VLLD power source of +24 V from HP Power Supply in mai ntenance van.

Figure 1-4. EM Filter

1-14. TEST RESOLVER

a. Characteristics. The Test Resol ver (Figure 1-5) is an el ectromechanical devi ce which consists of a resol ver (mounted inside a housing) and a hard-wired cable. The cable is approxi matel y 2.3 feet long. The approxi mate wei ght and di mensi ons of the housing (including the resolver) are as follows:

Weight:	1.0 pound
Lengt h:	3.0 inches
Di amet er:	2.2 inches

b. Features and Capabilities.
(1) Tests azi muth and el evation LED di splay seen in LD/R eyepi ece.
(2) Provides output signal s identical to those provi ded by the TU resol vers.
(3) Cable connector P1 mates with LD/R connector 112.
(4) Knob varies resol ver test si gnal and thereby changes LD/R display.

Fi gure 1-5. Test Resol ver

1-15. BATTERY CHARGER CABLE

a. Characteristics. The Battery Charger Cable (Figure 1-6) is approximately 3 feet long with a connector on each end.
b. Features and Capabilities.
(1) Connects Battery Charger to G/VLLD batteries.
(2) One connect or mates with Battery Charger connector and the other connector mates' with G/VLLD battery connector.

Figure 1-6. Battery Charger Cable

1-16. POVER MA NTENANCE CABLE

Characteristics. The Power Mai ntenance Cable Figure 1-7 is approxi mately 7. 2 feet long with two connectors on one end and one connector on the other end.
b. Features and Capabilities.
(1) Connects EM Filter to HP Power Supply.
(2) Connector P1 mates with EM Filter connector J1.
(3) Connectors P2 red and P2 bl ack mate with HP Power Supply out put terminals.

Fi gure 1-7. Power Mai nt enance Cable

1-17. IP POVER SUPPLY

a. Characteristics. The approxi mate wei ght and di mensions of the HP Power Supply (Figure 1-8) are as follows:

Wei ght:	76.0 pounds
Hei ght:	7.0 inches
Widt h:	19.0 inches
Lengt h:	18.9 inches

b. Features and Capabilities.
(1) Provi des +24 V out put to power $G / V L L D$ for test and troubl eshooting.
(2) Variable output voltage O to 40 V dc at O to 30 A .
(3) Overcurrent protection.
(4) Forced- ai r cooling.
(5) Temperature rating:
(a) Operating: 32 to $131{ }^{\circ} \mathrm{F}\left(\mathrm{O}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$.
(b) Storage: -40 to $+167{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.+75{ }^{\circ} \mathrm{C}\right)$.
(6) HP Power Supply is full rack size and can be rack-mounted in a conventional 19-inch rack panel using standard mounting screws.
(?) Operates from $115 \mathrm{~V}+10$ percent, 57 to 63 Hz .

Fi gure 1-8. HP Power Supply

1-18. SAFETY INTERLOCK

a. Characteristics. The Saf ety Interlock (Figure 1-9) is installed in El ectronic Shop Shelter AN ASM 146C to protect personnel entering shelter from G/VLLD I aser hazard. The Saf ety Interlock consists of an el ectromanetic rel ay, a push switch, a sensitive switch, and an el ectrical power cable with three terminal lugs. These parts are assembled into two small housings connected by wire and raceway conduit.
b. Features and Capabilities.
(1) Di sabl es LD/R I aser whenever shel ter door is opened by removing power from HP Power Supply (which powers LD/R).
(2) After shelter door is opened, to reactivate power, shelter door must be closed and a push switch must be pressed.
(3) Varning decal next to push switch reads "DANGER WEAR LASER GOGGLES PRI OR TO RESETTI NG RELAY. I MVI SI BLE NEODYM UM LASER RADI ATI ON".
(4) A second warning decal located on shel ter door reads "DANGER. AUTHORI ZED PERSONNEL ONLY. KNOCK AND WAI T, I NVI SI BLE NEODYM UM LASER RADI ATI ON".

MS 544184

Fi gure 1-9. Saf ety Interlock

CHAPTER 2
 OPERATI ON OF GROND SUPPORT EQU PMENT

Secti on I. FAULT LOCATOR

2-1. SCOPE

Thi s section contains theory of operation, description of controls and indicators, operating instructions, and operating instructions for unusual conditions for the Fault Locator.
a. Reference Designations. Reference desi gnations are used in the circuit di agrans to identify individual circuit el ements (such as resistors, switches, and circuit card assemblies). Reference designations consist of groups of letters and numbers. The letters identify the type of device and the number identifies the indi vi dual device. For example, the reference desi gnation, RI, represents a resistor; R2 represents another resistor, and Al represents a circuit card assenbly. Reference desi gnations can be combined to identify the rel ationship of a component to its next hi gher assenbly. For example, the reference desi gnation Al R1 represents resistor R1 on circuit card assembly Al.

The reference designation letter prefixes used in this manual are defined bel ow.
Letter Definition

A	Assentl y
CR	Di ode
DS	Di spl ay
E	Termi nal
F	Fuse
J	Connect or j ack
K	Rel ay
M	Met er
L	Induct or
P	Connect or pl ug
PS	Power suppl y
Q	Transi st or
R	Resi st or
S	Sui tch
TP	Test poi nt
W	Cabl e or wi ring
XF	Fuse hol der

b. Synbol s. Symbol s used in the Fault Locat or Functional Di agram(FO-1) to show circuits contained on Logic Card Al are defined in Table 2-1.

Tabl e 2-1. Symbol s

Symbol	Explanation
	Indicates a complete circuit. Writing inside

Indicates two-input logical "AND" gate.

A	B	C
0	0	0
1	0	0
0	1	0
1	1	1

Indicates two-input logical "NAND" gate.

Indicates line signal flow in functional and schematic diagrams. Signal flow is right to left and top to bottom unless specified by arrow.

2-2. THEORY OF OPERATION

The Fault Locator theory of operation is keyed to areas on the block di agram Figure 2-1 by white letters placed over bl ack hexagonal symbols. Refer to the functional di agram (Figure FO-1) for circuit detail.

A TEST SELECT Switch S5. Wafer B of $S 5$ sel ects the signal s from the LD/R to be monitored by meter M. Wafer C of S5 sel ects the appropriate return for each si gnal. The signal sel ected by wafer B is-al so applied by S 5 wafer A to METER test point TP4 for measurement by external test equi pment. Resistor R8 in the meter circuit is a limiting resistor for TP4. Resistors (R9 thru R12) in the meter circuit adjust the signal I evel for each switch position. The ENERGY ERROR, PFN VOLT SENSE-TA, and +450 V SENSE-TA si gnal s are scal ed on Logic Card Al. There is a green band on meter M which indicates the required signal I evel.

B COMPUTER WORD Decoder. The COMPUTER WORD si gnal from the LD/R contains the azi muth, range, el evation data bits, and a parity bit. Logic Card Al decodes the COMPUTER WDRD and displays the data on AZI MTH, M L; RANGE, M and ELEVATI ON, M displ ay readouts on the Fault Locator. Parity check circuitry checks to see if the COMPUTER WORD is an odd number. (When the COMPUTER WORD is generated by the LD/R, a parity bit is added either as 0 or 1 , so that the COMPUTER UORD is al ways an odd nunber.) If the parity check circuit determines that the COMPUTER WORD is not an odd number, it lights the PARITY fail indicator to indicate a data error.

C LASER A-TRI G Indicat or. From the LD/R, the A-TRIG signal is applied to the LASER A-TRI G indi cat or on Logic Card AI. An A-TRI G pul se is generated each time a laser pulse is emitted from the LD/R.

D Buffer circuit. This circuit on Logic Card A1 provides load isol ation for the OVERTEMP signal from the LD/R. The buffer circuit al so supplies an input to the HNPS controlling OR Iogic gate in Logic Card Al.

E OVERTEMP Indicator. This indicator on Logic Card Al Iights when the OVERTEMP si gnal indi cates a laser overtemperature condition in the LD/R.

F LAMP TEST Switch S7. S 7 tests all indicator Iamps and readouts on the Fault Locator for proper operation. A ground is applied to Logic Card Al through S7 to light all indicators and readouts. Readouts display 8888 for AZI MJH, M L; 8888 for RANGE, M and -888 for ELEVATI ON, M L.

G HVPS Switch S8. S8 controls the PFN power supply and +450 V power supply in the LD/R. When set to INHBIT, a ground is provi ded through S8 to the HVPS-controlling OR Iogic gate on Logic Card Al.

H OR Logic Circuit. This circuit on Logic Card Al provides the HVPS I NH BIT signal to the LD/R. Wen an LD/R overtemperature condition exists or when the HVPS switch 58 is set to INHBIT, the HVPS INHBIT si gnal di sabl es the LD/R PFN power supplies.

Figure 2-1. Fault Locator Block Di agram

1 LASER Switch S9. When set to START, S9 activates I aser fire interlock rel ay K1. BATTERY VOLTAGE and return from the Fault Locator are applied through contacts of S 9 to energize K1. BATTERY VOLTAGE goes through K1 and back out of the Fault Locat or to the LD/R as the FIRE REMDTE signal. When set to the OFF position, rel ay K1 is not activated. When set to the ON position, the switch retains the function of the previous position of the switch. That is, when the switch is moved from OFF to ON, K1 remai ns deactivated, but when the switch is moved from START to ON, K1 remai ns activated.

J PRESET RANGE Switch S6. When set to ON, S6 allows the 8000M TA si gnal from the LD/R to pass through a gate to the video simlation Iogic on Logic Card A1. When the 8000M TA signal is applied to the video si mulation logic, it outputs two del ayed pulses simlating a range of $8300+150$ meters (LD/R set to RNG 1) or $8800+150$ meters (LD/R set to RNG 2). This si gnal is generated by the LD/ R as a si mul ated target ret urn. Wen S 6 is set to OFF, the 8000M TA si gnal is prevented from reaching the video simul ation I ogic.

K Video Simulation Logic. Thi s circuit provides the simul at ed target ret urn to the LD/R. When the 8000M-TA si gnal is recei ved from the LD/R, an output pulse from a NAND gate in Al is applied to a pulse del ay circuit. The output of this circuit is applied to the LD/R as the VI DEO-TA-ENABLE signal that simul ates a target.

1. LASER Switch S1. When set to INHIBIT, S1 di sables the QS TRI G and F/T TRI G signal s, which prevents the Iaser from firing. In the ENABLE position, the signals are unaffected and the laser can be fired.

M ENERG FAIL I ndicator. Low LD/R I aser out put energy is indi cated by the ENERGY FAIL indicat or on Logic Card Al, which duplicates the LD/R eyepi ece red indi cator.

N Power Supply PS1. PS1 provi des +5 V power for the Fault Locator. The power supply generates the +5 V operating voltage from the $115 \mathrm{~V}, 60$ to 400-Hz input applied through POWER switch S2 and POVER fuse F1.

O POWER I ndicator DS1. DS1 lights when +5 V is present at the output of PSI.

TM 9- 4931-477-14

2-3. CONIROLS AND I NDI CATORS

The controls and indicators of the Fault Locator are all located on the panel ill ustrated in Fi gure 2-2.

The controls and indi cat ors are expl ai ned in Table 2-2. Panel nomencl at ure is shown in Figure 2-2; reference designators are shown on the functional diagram (Figure FO-1).

Fi gure 2-2. Fault Locator Controls and Indicators

Table 2-2. Fault Locator Controls and Indi cators

$\begin{gathered} \text { Key to } \\ \hline \text { Fi gure 2-2 } \end{gathered}$	Switch, Control, or I nstrument	Function
1	PARI TY indi cator	Indi cates one or more of the bits of the data word from LD/R are incorrect.
2	ENERGY FAI L i ndi cat or	I ndi cates Iow LD/R I aser out put (dupl icates full-on red LD/R eyepi ece readout).
3	AZI MJH, M L readout	Displays azi muth data recei ved from LD/R in roils (4 digits).
4	TEST SELECT meter	I ndi cates voltage of si gnal sel ected by TEST SELECT switch. Green band indi cates regi on of acceptance.
5	RANGE, M readout	Displays range data recei ved from LD/R in meters (4 digits).
6	ELEVATI ON, M L readout	Di splays el evation data recei ved from LD/R in roils (3 di gits with minus (-) sign for negative, no pol arity indication for positive).
7	OVERTEMP i ndi cat or	I ndi cates LD/R is overheating (duplicates blinking red LD/R eyepi ece readout).
8	LASER A-TRI G i ndi cat or	I ndi cates LD/R is I asing and senses each pul se.
9	LASER switch cover	Prevents accidental firing. (See I abel on panel for hazard warning.)
10	LASER switch S9	START (momentary) - Fires I aser (if LD/R POWER switch is set to ON). ON - Same as OFF. OFF - Di sabl es Laser Fire Commands Saf ety Rel ay inside of Fault Locator.
11	POWER fuse	Provides overload protection.
12	POVER i ndi cat or	Indi cates POWER S2 switch is in ON position and 115 V ac is applied to circuits.

Table 2-2. Fault Locator Controls and Indicators - Continued

Key to Fi gure 2-2	Switch, Control, or I nstrument	Function
13	POWER switch S2	ON - Applies power to Fault Locator circuits through POWER fuse. OFF - Removes power from Fault Locator circuits.
14	PRESET RANGE switch S6	Controls application of LD/R $8300 \pm 150 \mathrm{M}$ and $8800+150$ M VI DEO SI MLATOR si gnal -to LD/R Vi deo Pulse Processing circuits.
15	LAMP TEST switch S7	Applies power to all Fault Locator indi cators and readouts for built-in-test.
16	TEST SELECT switch S5	Sel ects signal from LD/R to be monitored on TEST SELECT meter.
17	TEST SELECT METER test point TP4	Provides test point for LD/R signals applied to TEST SELECT meter.
18	LASER switch S1	Controls FLASHLAMP and Q SWTCH firing circuits to allow PFN testing without firing I aser.
19	Test points (1 thru 16, J3)	Provides test points for monitoring of si gnal s shown on panel.
20	HVPS switch S8	Controls PFN power supply. When in INHI BI T, di sabl es PFN power supply.

2-4. OPERATI NG I NSTRUCTI ONS

a. Renove cover as follows:
(1) Press automatic relief val ve on cover to equalize pressure.
(2) Loosen four wing nuts on cover.
(3) Push down and out on four cover clips to clear lip on Fault Locator case.
(4) Renove and i nvert cover.
b. Check Fault Locator panel to ensure that all switches are in OFF or INHBIT position. (TEST SELECT switch S5 may be in any position.)
c. Renove Test Cable V1 and Power Cable WR from cover as follows:
(1) Press on center of two inner lid clips and pull on outer parts.
(2) Pull inner lid open and renove Test Cable W1 and Power Cable VR.
d. Connect Test Cable VI and Power Cable VR per Figure 2-3.
e. Set POWER switch S 2 to ON (PONER indi cator lights and di gital readout displays indicate all zeros).
f. Press LAMP TEST switch S7 while observing panel indicators and readouts. Indi cations are as follows:
(1) All indi cat ors light (PARI TY, LASER A-TRI G, ENERGY FAI L, and OVERTEMP).
(2) POMER i ndi cat or remai ns on.
(3) Readouts indi cate as follows:

AZI MTH, M L	8888
RANGE, M	8888
ELEVATI ON, M L	-888

NOTE
I ndi cators and readouts may be in any state after rel easing LAMP TEST switch S7.
9. Set PONER switch S 2 to OFF and then set to ON .
h. Set TEST SELECT switch S5 to each position while observing TEST SELECT meter. Meter indi cat or needle remai ns at zero for each position if LD/R is not operating or is not connected. ENERGY ERROR position indicates approxi mately 0.6 on meter. If $L D / R$ is connected and operating, meter indicates status of si gnal s from LD/R.

WARNING

Wile Fault Locator is connected to LD/R, operator can fire LD/R Iaser. Observe all WARNI NGS in front of this manual.
i. Operate Fault Locat or to troubl eshoot LD/R per TM 9-1260-477-34-2.
j. Shut down Fault Locator as follows:
(1) Set POWER switch S2 to OFF (all indicators and readouts are off).
(2) Set all switches to OFF or INHBIT position. (TEST SELECT switch S5 may be in any position.)
(3) Di sconnect Test Cable W1 and Power Cable VD.
(4) Stow Test Cable WI and Power Cable WR in cover. Cl ose inner Iid and press on outer parts of two inner lid clips to secure inner lid.
(5) Install cover, engage four cover clips on lip provided on Fault Locator case, and press up and in on clips. Tighten four wing nuts on cover.

2-5. OPERATI ON UNDER UNUSUAL COND TI ONS

Follow normal operating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

MS 42037ec

Fi gure 2-3. Fault Locator Interface

Section II. REMOTE CAPABILITIES TESTER

2-6. SCOPE

Thi s section contains diagrans and general theory to familiarize maintenance personnel with component functions of the Remote Capabilities Tester (RCT). This information will assist personnel in the operation and repair of the RCT. The theory of operation is expl ai ned using the block di agramin Figure 2-4 The schematic di agramin Figure FO-3 may be used for references to RCT circuitry.

2-7. THEORY OF OPERATION

The following RCT general operation theory areas are keyed to corresponding areas on the block di agram (Figure 2-4) by use of white letters on a black hexagonal symbol. Refer to the schematic di agram Fi gure FO-3) for circuit details.

A The LASER FIRE switch S4 remotel y fires the LD/R I aser. It siml at es remote laser firing from the FIST vehicle.
B The LASER ARMED indi cat or XDS1 lights when the LD/R I aser is in standby node of operation.

C The RETICLE BRI GHTNESS variable-resistance potentiometer R2 adj usts the brightness of the reticle in the LD/R eyepiece. It simlates the adj ust ment of the reticle brightness from the FIST vehicle.

D The FIRE CMD switch S2 provi des a fire command si gnal to the UVR. It simlates the si gnal which is sent to the LD/R from the Digital Message Devi ce (DMD).
(E) The MDDE switch S1 provides sel ection of the I aser mode It allows remote sel ection of either the desi gnate (DES), range (RNG), or azi muth adj ust (AZ AD) modes.

F The TESTER ON indicat or XDS2 lights when +24 VDC is provided to the RCT through connector Jl.
(G) The Range SELECT switch S3 provi des sel ection of either RNG 1 or RNG 2 rangi ng mode in the LD/R. It provi des remote sel ection of ranging mode.

H The octal code switches, S5, S6, and S7, provide a pul se repetition frequency (prf) code to the LD/R. Switches permit prf code to be set renotel y.

1 The test points permit measurement of the serial computer word signal from the LD/R. This si gnal contai ns azi muth, range, and el evation information, and the energy fail indication.

Figure 2-4. Renote Capabilities Tester Block Diagram

2-8. CONIROLS AND I NDI CATORS

The controls and indicators and panel nomenclature of the RCT are shown in Fi gure 2-5.

The function of the controls and indicators is expl ai ned in Table 2-3.

Fi gure 2-5. Renote Capabilities Tester Controls and Indicators

Table 2-3. Remote Capabilities Tester Controls and Indicators

Key to Fiqure 2-5	Switch, Control, or I nstrument	Function
1	RCT Cable Connector J 1	I nput and output for 24 VDC and $L D / R$ FIST si gnals through the RCT cable assentbly.
2	TESTER ON i ndi cator XDS2	I ndi cates 24 VDC is applied to RCT circuits.
3	CMPTR WORD test poi nt (TP1)	Provides test point for monitoring CMPTR WORD si gnal.
4	RTN test point (TP3)	Provi des test poi nt RTN when monitoring CMPTR WORD or CMPTR WORD si gnal.
5	CMPTR WORD test poi nt (TP2)	Provides test point for monitoring CMPTR WORD si gnal.
6	Code Sel ect switches A, B, C (S5, S6, S7)	Provi des prf code inputs to LD/R.
7	MDDE sel ect switch S1	Sel ects DES, RNG, or AZ ADJ mode of operation.
8	LASER FIRE switch cover	Prevents accidental firing (See label on panel for hazard warning).
9	LASER FIRE switch S4	ON -- Fires I aser. OFF -- Di sables laser fire rel ay in tester.
10	LASER ARMED i ndi cat or XDS1	I ndi cates LD/R armed and may be fired.
11	RANGE SEL switch S3	Sel ects RNG 1 or RNG 2 mode of operation for LD/R.
12	RETI CLE BRI GHTNESS control R2	Adjusts brightness of reticle displ ay in LD/R eyepi ece.
13	FIRE CMD switch S2	ON -- Inputs FIRE CMD si qnal to LD/R. OFF -- FIRE CMD signal is not remotely inputted to LD/R.

2-9. OPERATI NG I NSTRUCTI ONS

Ref er to TM 9-1260-477-34-2.

2-10. OPERATI ON UNDER UNUSUAL CONDI TI ONS

Follow normal operating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

Section III. PURGE AND FILL EQU PNENT

2-11. SCOPE

Thi s section contains theory of operation, description of controls and indicators, operating instructions, and operating instructions for unusual conditions for the Purge and Fill Equi prent.

2-12. THEORY OF OPERATI ON

The Purge and Fill Equi prent is used during mai ntenance of the LD/R.
a. The Gas Charging Assently y is connected between the nitrogen source and the LD/R (using either the Fill Val ve Extension or the Purge Val ve Adapter). It regulates the pressure and the flow of nitrogen gas into the LD/R during high- and low pressure purge and fill procedures.
b. The Purge Val ve Adapter is connected between the Gas Charging Assentbly and the $L D / R$ low pressure purge and fill port for low pressure purge and fill procedures.
c. The Fill Val ve Extensi on is connected between the Gas Charging Assenbly and the LD/R check val ve for high-pressure purge and fill and depressurization procedures.
d. The Hi gh Pressure Gage is used to measure the nitrogen pressure in the LD/R.

2-13. CONTROLS AND I ND CATORS

The controls and indi cators for the Purge and Fill Equi pment are described in Table 2-4 and illustrated in Fi gure 2-6.

2-14. OPERATI NG I NSTRUCTI OSS

Ref er to TM 9-1260-477-34-2.

2-15. OPERATI ON UNDER UNUSUAL CONDI TI ONS
Follow normal operating instructions.

Table 2-4. Purge and Fill Equipment Controls and Indicators

$\begin{gathered} \text { Key to } \\ \hline \text { Fi gure 2-6 } \end{gathered}$	Switch, Control, or I nstrument	Function
1	Regul at or Pressure Gage	I n di cates pressure in Regul ator.
2	I nput Pressure Gage	I ndi cates suppl y pressure.
3	Regul at or Rel i ef Val ve	Allows excess nitrogen to escape.
4	Charging Rel i ef Val ve	Allows excess nitrogen to escape.
5	Connection Val ve	Connects Gas Charging Assenbly y to Purge Val ve Adapter and Fill Val ve Extensi on.
6	Hi gh Pressure Gage	Indi cates LD/R high pressure.
7	Val ve Deflator	Connects Hi gh Pressure Gage to Fill Val ve Ext ensi on.
8	Fill Valve Extension	Allows nitrogen to fill LD/R check valve.
9	Rel i ef Val ve	Allows excess nitrogen to escape.
10	Purge Val ve Adapter	Regul ates gas pressure at 5 psig.
11	Vent Val ve	Vents nitrogen from Gas Charging Assently y.
12	Main Val ve	Allows nitrogen to remain in Gas Charging Assentbly when closed.
13	Regul at or Pressure Tee Handl e	Regul ates and allows nitrogen to fill Gas Charging Assenbly.

MS 544185

Figure 2-6. Purge and Fill Equi pment Controls and Indicators

Section IV. EMI FILTER AND POWER MAINTENANCE CABLE

2-16. SCOPE

Thi s section contains theory of operation, description of controls and indicators, operating instructions, and operating instructions for unusaual conditions for the EM Filter and Power Mai ntenance Cable.

2-17. THEORY OF OPERATION

The EM Filter is used with the Power Maintenance Cable to connect the HP Power Supply to the LD/R Figure 2-7) The EM Filter connects between the LD/R and the Power Maintenance Cable and filters the +24 V input to the LD/R. Inputs to the EM Filter are +24 V and +24 V RTN. Outputs fromthe EM Filter are +24 V to the LD/R on EM Filter connector $2 \mathrm{P} 3(+)$ and +24 V RTN on EM Filter connector $2 \mathrm{P} 1(-)$.

For detailed information on the EM Filter, refer to TM 9-1260-477-34-2.

Figure 2-7. EM Filter and Power Maintenance Cable Attachment to LD/R and HP Power Supply

2-18. CONTROLS AND INDICATORS

The controls and indicators for the EM Filter and Power Maintenance Cable are described in Table 2-5 and illustrated in Figure 2-8.

2-19. OPERATING INSTRUCTIONS

Ref er to TM 9-1260-477-34-2.

2-20. OPERATION UNDER UNUSUAL CONDITIONS

Follow normal operating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

MS 434725A

Flgure 2-8. EM Filter and power Maintenance Cable Controls and Indi cators

Section V. TEST RESOLVER

2-21. SCOPE
Thi s section contai ns theory of operation, description of controls and indi cators, operating instructions, and operating instructions for unusual conditions for the Test Resolver.

2-22. THEORY OF OPERATION

The Test Resolver is used to test the azi moth and el evation LED di splays seen in the LD/ R eyepi ece. The Test Resol ver connects to LD/R connector $1 / 2$ whi ch is the same connector that the TU cable connects to during actual system operation. The Test Resol ver provides out put si gnal s identical to those provided by the TU Resol ver.

2-23. CONTROLS AND INDICATORS

The controls and indi cators for the Test Resolver are described in Table 2-6 and ill ustrated i r Figure 2-9.

Table 2-6. Test Resolver Controls and I ndi cators

$\begin{gathered} \text { Key to } \\ \hline \text { Fi gure } 2-9 \\ \hline \end{gathered}$	Switch, Control, or I nstrument	Function
1	Resol ver	Outputs si gnal s that indicate rotor position rel ative to stator.
2	Cabl e connect or P1	Connects Test Resol ver to LD/R connector 1) 2 (3).
4	Knob	Varies TU Resol ver test si gnal and thereby changes LD/R di splay.

2-24. OPERATING INSTRUCTIONS

Ref er to TM 9-1260-477-34-2.

2-25. OPERATION UNDER UNUSUAL CONDITIONS

Follow normal oper ating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

MS 434727A

Fi gure 2-9. Test Resol ver Controls and I ndi cators

2-26. SCOPE

This section contains theory of operation, description of controls and indicators, operating instructions, and operating instructions for unusual conditions for the HP Power Supply.

2-27. THEORY OF OPERATION

The HP Power Supply can operate in either a constant voltage or constant current mode. For G/VLLD test and troubl eshooting, the constant voltage mode is used. The out put voltage is set to +24 V (or some other val ue as directed by the troubl eshooting procedures in TM 9-1260-477-34-2) using the front panel VOLTAGE controls. The CURRENT controls then are used to establish the current limit. If the current limit is reached, the voltage drops aut onatically so that the current limit is not exceeded.

The HP Power Supply features an overvoltage protection circuit which is used only in the constant current operating mode. For G/VLLD tests, onl y the constant voltage mode is used. The OVERVOLTAGE ADJ UST control should be set to fully cw so that it does not override the VOLTAGE control.

2-28. CONTROLS AND IND CATORS

The controls and indicators for the HP Power Supply are described in Table 2-7 and ill ustrated in Fi gure 2-10.

Table 2-7. HP Power Supply Controls and I ndi cat ors

$\begin{gathered} \text { Key to } \\ \begin{array}{l} \text { Fi gure 2-10 } \end{array} \\ \hline \end{gathered}$	Switch, Control, or Instrument	Function
1	Power indi cator	Lights to indicate ac power is applied to unit.
2	VOLTS meter	I ndicates voltage output (0 to 50 V dc).
3	AMPERES meter	I ndi cates current output (0 to 35 A).
4	OVERVOLTAGE i ndi cator	Lights to indicate an overvoltage condition.
5	OVERVOLTAGE ADJ UST	Sets overvoltage circuits to trip at a specified voltage level when OVERVOLTAGE (4) occurs.
6	CURRENT controls	
	CURRENT FI NE control	Adj usts output current limits.
	CURRENT COARSE control	Adj usts output current limits.
7	VOLTAGE controls	
	VOLTAGE FINE control	Adj usts out put voltage.
	VOLTAGE COARSE control	Adj usts out put voltage.
8	\sim LINE switch	Turns power ON or OFF.
9	Renote sensing terminals	A1 thru A9 not used. +S and - S provi de connections for renote voltage sensing.
10	\sim LI NE ter minals	Provides input for $115 \mathrm{~V}, 60 \mathrm{~Hz}$ power.
11	Out put terminals	Connects to Power Maintenance Cable connector P2. Provi des voltage output
12	Ground terminal	Provi des earth ground connection.

FRONT PANEL

Fi gure 2-10. HP Power Supply Controls and Indicators

2-29. OPERATI NG I NSTRUCTI ONS

a. Turn CURRENT COARSE and FINE control s (6, Figure 2-10) and VOLTAGE COARSE and FINE controls (7) fully ccw Turn OVERVOLTAGE ADJ UST (5) fully cw

WARNiNG

Be sure ac power cable is unpl ugged.
Be sure to connect input ground terminal (12) to an external earth ground.

CAUTIOM

Do not interchange $A C C / A C$ and $A C / A C$ input Iines.
b. Remove HP Power Supply rear cover.
c. Connect ac power to rear panel by connecting white lead to ACC/AC terminal, bl ack I ead to AC/AC terminal, and green lead to ground terminal. Connect ground terminal (12) to an earth ground.
d. Instal I HP Power Supply rear cover.
e. Plug in ac power cable to 115 V ac.
f. Set $\mathcal{L I} N E$ switch (8) to ON. Power indi cator (1) lights.
g. Adj ust VOLTAGE COARSE and FINE controls (7) for +24 V on Voltmeter (2).
h. Set \sim LINE switch (8) to OFF. Power indicator (1) goes off.
i. Connect a wire between rear panel output terminal $(+)$ to rear panel output terminal (-) (11).
j. Set ~LI NE switch (8) to ON and adj ust CURRENT COARSE and FI NE control s (6) for 25 A on AMPERES meter (3).
k. Set \sim LINE switch (8) to OFF.
I. Di sconnect wi re from rear panel output terminal (+) and rear panel output terminal (-) (11).
m HP Power Supply is ready for use.

2-30. OPERATION UNDER UNUSUAL CONDITIONS
Follow normal operating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

2-31. SCOPE
Thi s section contains theory of operation, description of controls and indicators, operating instructions, and operating instructions for unusual conditions for the Saf ety Interlock.

2-32. THEORY OF OPERATION

Refer to Figure 2-11 for a schematic of the saf ety interlock. When the shelter door is closed, the sensitive switch closes applying 115 V ac to rel ay terminal 6 . When the push switch is pressed, 115 V ac is applied to rel ay terminals 1 and 2 activating the rel ay and applying power to the load. Wen the rel ay is activated, the contacts cl ose, connecting terminals 6 and 1, directly. Wen the push switch is rel eased, the rel ay remains activated due to the path fromterminals 1 to 6 . In thi s condition, 115 V ac remai ns applied to the load. When the door is opened, the rel ay is deactivated, renoving power from the load.

Figure 2-11. Saf ety Interlock Schematic

2-33. CONTROLS AND INDICATORS

The controls and indicators for the Saf ety Interlock are described in Table 2-8 and illustrated in Figure 2-12.

Table 2-8. Safety Interlock Controls and Indicators

Key to Fi gure 2-12	Switch, Control, or I nstrument	Function
1	Sensitive switch	When shelter door is opened, power is renoved from HP Power Supply di sabling LD/R.
2	Push switch	Activates and Iatches interlock rel ay when door is closed and thereby applies power to I oad.
3	Receptacle connect or	Mates with electrical power cable el ectrical pl ug connector.
4	El ectrical pl ug connect or	Mates with electrical cabi net receptacle connect or.
5	Terminal I ugs	Mate with HP Power Supply \sim LINE terminals.

2-34. OPERATING INSTRUCTIONS

a. Cl ose shel ter door.

WARNING

When push switch is pressed, all test equi pment controlled by the Safety Interlock should be recei ving power. Ensure LD/R POVER switch is set to OFF to di sable laser. Observe laser warni ngs on WARNI NG page.
b. Press push switch (2, Fi gure 2-12).
c. If shelter door is opened, power is removed from all test equi prent controlled by the Safety Interlock. To reactivate power, repeat steps a and b.

2-35. OPERATION UNDER UNUSUAL CONDITIONS
Follow normal operating instructions. Avoid getting water into el ectrical connectors or on exposed el ectrical pins.

MS 544187

Fi gure 2-12. Safety Interlock Controls and I ndi cators

CHAPTER 3

MAINTENANCE

Section 1. SERVICE UPON RECIEPT OF MATERIEL

3-1. GENERAL

Thi s section contains procedures to be used by mai ntenance personnel upon recei ving the GSE. This section al so contains information on repair parts, special tools, TMDE, and support equipment requi red for maintenance of the GSE.

3-2. DUTIES OF USING ORGANIZATION

a. General. Wen handling, inspecting, and mai ntaining the GSE, observe the following instructions.
(1) Do not force knobs, switches, or controls beyond thei r mechani cal stops.
(2) If a component cannot be adj usted or repai red in accordance with authorized procedures, refer the problem to the supporting mai nt enance unit.
(3) Use only those tools, equipment, and materials which are specifically authorized in paragraph 3-3.
b. Services
(1) Make an initial inventory per Appendi x C when equi pment is recei ved. Note any missing itens and report them promptly.
(2) Check stock numbers and serial numbers to ensure that the correct itens were recei ved.
(3) Performany necessary cleaning in accordance with paragraph 3-6.
(4) Performan inspection of the GSE components in accordance with par agraph 3-7.
(5) Check the Fault Locator by performing the operating procedures in accordance with paragraph 2-4 with the following exceptions:
(a) Do not connect Test Cable VL in step d.
(b) Do not performstep h.
(6) Check the RCT by performing the operating procedures j n TM 9-1260-477-34-2 with a good LD/R. If fault exists, refer to Table 3-4.
(7) Report any deficienci es using applicable reports, records, and forns requi red for inventories and inspections.

3-3. REPAIR PARTS, SPECIAL TOOLS, TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE), AND SUPPORT EQUIPMENT

a. Repair Parts. Repair parts are listed and illustrated in TM 9-4931-477-24P.
b. Special Tool s, TMDE, and Support Equi pment.
(1) No special tools are requi red.
(2) TMDE and support equi prent required for mai intenance of the GSE are listed in Table 3-2.

Table 3-1 del eted.
Table 3-2. TMDE and Support Equi pment

Item No.	Name	National Stock Nunber
1	Mul timeter AN PSM-45 or Miltimeter AN/ PSM-6B	$\begin{aligned} & 6625-01-139-2512 \text { or } \\ & 6625-00-957-4374 \end{aligned}$
2	Oscilloscope, Tektroni x 7633 or Equi val ent	$\begin{aligned} & 6625-01-093-2261 \text { or } \\ & 6625-01-134-3220 \end{aligned}$
3	Amplifier, Plug-in, Dual Trace 7A26 or Equi val ent	$\begin{aligned} & 6625-00-361-5318 \text { or } \\ & 6625-01-132-0244 \end{aligned}$
4	Counter-Ti mer, Pl ug-in 7D15 or Equi val ent	$\begin{aligned} & 6625-00-392-2604 \text { or } \\ & 6625-01-132-0245 \end{aligned}$
5	Clips, Alligator, Red and Black, 2 Sets Mueller PN 63C or Equi val ent	$\begin{aligned} & 6625-00-463-5241 \text { or } \\ & 6625-01-040-0714 \end{aligned}$
6	Pl ug, Banana, Cords, 4-Ft Length, 3 Sets H. H. Smith PN 1860-12-102 and 1860-12-103 or Equi val ent	NSNL
7	Del et ed	
8	Plug AN806-3	4730-00-289-0430
9	Kit, Antistatic Ground	4940-01-087-3458
10	Shop, El ectronic, Shel ter, Mbunted Avi oni cs AN ASM 146C	4940-01-110-9560
11	Ti me Base, Dual, Pl ug-in 7B53A	6625-00-261-5139
12	Digital Mllimeter, Pl ug-in 7D13	6625-00-517-6880
13	Oscill oscope OS-291/G or Equi val ent	6625-01-258-0022
14	Digital El ectronic Counter, AN USM-459A or Equi val ent	6625-01-271-3012

3-4. GENERAL

Thi s section contai ns mai ntenance checks and services, cleaning, inspection, and painting procedures for the GSE. Tools and equi pment required to perform these procedures are listed in section $1 . \quad$ Supplies and materials required are listed in Table D-1.

3-5. MAINTENANCE CHECKS AND SERVICES

No periodic checks and services are required for the GSE.

3-6. CLEANING

WARNING

I sopropyl al cohol and cleaning sol vents are toxic, vol atile, and flammable. Use only in well-ventilated area away from heat or open flame. Avoid prol onged breathing of vapor and contact with skin.

CAUTION

Do not get i sopropyl al cohol on any rubber parts or seal ants. I sopropyl al cohol may cause rubber parts to deteriorate and may cause some seal ants to di ssol ve.
a. General Cleaning Instructions. The GSE components should al ways be clean. Otherwise, performance may be degraded, and rel atively obvious defects that would be noted in a visual inspection may be hidden by dust, grease, or other forei gn matter.
(1) Metal Parts. Use dry, clean wi ping rags to renove dust, dirt, grease, misture, or other forei gn matter from GSE metal parts. Use a brush to I oosen foreign matter from around knobs and indicators. If foreign matter cannot be renoved using dry wi ping rags, dampen a rag with isopropyl al cohol and gently wi pe the area.

CAUTION

Do not get water on electrical pins or connections.
(2) Cables and Rubber Parts. Clean using a mild detergent and warm water. Dry parts using a clean, absorbent wi ping rag.
b. Cleaning Procedures for Cold Weather Operation. If temperat ure is bel ow $32{ }^{\circ} \mathrm{F}\left(0{ }^{\circ} \mathrm{C}\right)$, add glycerol to cleaning water. This prevents the water from freezing on the part being cl eaned.

3-7. INSPECTION

a. A visual inspection of the GSE must be performed to make sure that it is in good condition.
b. Repl acement components should be substituted for those found to be danaged, worn, or beyond serviceable limits. Dirt, grease, and foreign matter should be removed fromall inspected surfaces per paragraph 3-6. Preservatives and forei gn matter should be removed fromel ectrical connectors. Areas in which the paint is scratched, chi pped, or worn should be repainted per paragraph 3-8. Other specific repair functions which are authorized for various levels of maintenance are gi ven in the Maintenance Allocation Chart (Appendix B).
c. After complete inspection is performed, ensure serviceability of the Fault Locat or by performing the operating procedures in accordance withparagraph 2-4 with the following exceptions:
(1) Do not connect Test Cable V1 in step d.
(2) Do not performstep i.
d. After complete inspection is performed, ensure serviceability of the RCT by performing the operating procedures in TM 9-1260-477-34-2 with a good LD/R. If fault exists, refer to Table 3-4.
e. A complete inspection is performed for initially recei ved GSE to ensure that the equi pment is not damaged. The inspection should al so be performed before using the equi prent to troubl eshoot the LD/R.

3-8. PAINTING
Ref er to TM 43-0139.

Section III. TROUBLESHOOTING

3-8.1. GENERAL

Thi s section contains troubl eshooting indexes and test and troubl eshooting procedures for the GSE. Table 3-2 lists the equi pment required to perform these procedures.

The troubl eshooting indexes list failure symptons and troubl eshooting actions. The troubl eshooting action col um of the table provides references to step-by-step procedures used to fault isolate the malfunction to a failed component or wiring fault.

The ellipsis (...) indicates an intentional blank or termination of a procedural st ep.

An open circuit indicates greater than 20 megohns.

3-9. TROUBLESHOOTING FAULT LOCATOR

CAUTION

Logic Card Al is el ectrostatic di scharge sensitive. Protect this card by wearing grounding wristband when probing. Handling and/ or installation of indi vidual cards should be performed at a staticfree work station. This card should be antistatic packaged during handling and storage.
a. The DS/GS level troubl eshooting procedures fault isol ate to removable components. After a repair is made, the Fault Locator should be checked for proper operation by performing the operating procedures in paragraph 2-4, excl udi ng step i., with a good LD/R. If fault exists, refer to Table 3-3.
b. Common Fault Locat or failures are listed in Table 3-3. Fault isol ation procedures are contai ned in Tables 3-5 thru 3-20.
c. Functional diagram (Fiqure FO-1) and wiring list (Table E-1) provide complete point-to-point wiring information. This information should be used with the troubl eshooting tables to reduce time in locating the fault and in restoring equi pment to operation.

3-10. TROUBLESHOOTING REMOTE CAPABILITIES TESTER

a. The DS/GS level troubl eshooting procedures fault isolate to renovable components. After a repair is made, the RCT should be checked for proper operation by performing the operating procedures in TM 9-1260-477-34-2 with a good LD/R. If fault exists, refer to Table 3-4.
b. Common RCT failures are listed in Table 3-4. Fault isolation procedures are contai ned in Tables 3-21 thru 3-30.
c. Schematic di agram (Figure FO-3) and wiring list (Table E-2) provide complete point-to- point wiring information. This information should be used with the troubl eshooting tables to reduce time in locating the fault and in restoring equi pment to operation.

Table 3-3. Common Fault Locator Failures, Troubl eshooting Index

Item	Fail ure Symptom	Troubl eshooting Action
1	Fault Locat or POWER indi cator does not I ight	PerformTable 3-5 procedures.
2	Fault Locat or fails LAMP TEST	Perform Table 3-6 procedures.
3	A TRI G indi cat or does not light	PerformTabl e 3-7 procedures.
4	OVERTEMP indicator does not light	Perform Table 3-8 procedures.
5	PARI TY or ENERGY FAI L indi cators do not light	PerformTable 3-9 procedures.
6	Fault Locator readouts fail or are i ncorrect	Perform Table 3-10 procedures.
7	TEST SELECT switch 55 i noperative	Renove panel per paragraph 3-16. a. Repl ace switch 55. Install panel per paragraph 3-16.a.
8	Range readout value is incorrect	Replace Al per paragraph 3-16.b.
9	TEST SELECT meter indi cations are i ncor rect	Perform Table 3-11 procedures.
10	LASER switch S1 circuit fails	PerformTable 3-12 procedures.
11	HVPS switch S8 circuit fails	Perform Table 3-13 procedures.
12	PRESET RANGE switch S6 circuit fails	Perform Table 3-14 procedures.
13	SI MVER SENSE fault	Perform Table 3-15 procedures.
14	Test poi nt (1, 2, 5, 10, 11, 14, 15) fault	Perform Table 3-16 procedures.
15	$\begin{aligned} & \text { Test poi nt }(3,6,7,8,9,12,13,16) \\ & \text { fault } \end{aligned}$	PerformTable 3-17 procedures.
16	Power Cable (VD) fault	Perform Table 3-18 procedures.
17	Test cable (V1) fault	PerformTable 3-19 procedures.
18	LASER switch 59 circuit fails	PerformTabl e 3-20 procedures.

Table 3-4. Common Remote Capabilites Tester Failures, Troubl eshooting I ndex

Item	Failure Symptom	Troubl eshooting Action
1	TESTER ON indi cator does not light	Perform Table 3-21 procedures.
2	LASER ARMED indi cator does not light	Perform Table 3-22 procedures.
3	Test Point (1, 2, 3) fault	Perform Table 3-23 procedures.
4	Code Switch circuit fails	Perform Table 3-24 procedures.
5	RETICLE BRI GHTNESS control circuit fails	Perform Table 3-25 procedures.
6	LASER FIRE switch circuit fails	Perform Table 3-26 procedures.
7	MODE switch circuit fails	Perform Tabl es 3-27 procedures.
8	FIRE CMD switch circuit fails	Perform Table 3-28 procedures.
9	RANGE SEL switch circuit fails	Perform Tabl e 3-29procedures.
10	RCT Cable (VR) fault	Perform Table 3-30 procedures.

Table 3-5. Fault Locator POWER I ndicator Does Not Li ght

St ep	Item	Action	I ndi cation	Yes	No
1	POWER Switch S2	Set to OFF.	-••	-••	-••
2	Fuse	Renove by turning ccw.	-••	-•	-
3	Fuse	Check 1.0 amp fuse. Verify that fuse rating is 1.0 amp .	Fuse checks OK.	Put fuse back in pl ace. Go to next step.	Repl ace with a new 1.0 amp fuse and go to next step.
4	POWER Switch S2	Set to ON.	Power indi cator lights.	Return fault locat or to service.	Go to next step.
5	POWER Switch S2	Set to OFF.	-••	-••	-••
6	Fuse	Renove by turning ccw.	-••	-••	- •
7	Fuse	Check 1.0 amp fuse.	Fuse checks OK	$\begin{aligned} & \text { Go to step } \\ & 20 . \end{aligned}$	Repl ace fuse and go to next step.
8	Harness	Tag and di sconnect wire from PS1 - AC+.	-••	-•	- ••
9	Har ness	Measure continuity between tagged wi re and S2-6.	Measurement i ndi cat es an open circuit.	Go to next st ep.	Troubl eshoot harness wi ring per FO. 1.
10	Harness	Reconect wire to PS1 - AC+	-••	-	
11	Har ness	Measure continuity bet ween PS1 - V+ and TP16.	Measurement i ndi cates an open circuit.	Go to next step.	Repl ace shorted wire and retest.
12	Har ness	Tag and di sconnect wi re from PS1 - V+ (+5 V OU).	-	-	-•
13	Faul t Locat or	Insure fuse F1 and power cable VR are i nstall ed.	-••	-•	- •
14	POWER Switch S2	Set to ON.	Fuse bl ows.	Repl ace PS1 and wi res per paragraph 3-166.	Go to next st ep.
15	POVER switch S2	Set to OFF.	-••	-•	-•
16	I ndi cat or DS1	Unsol der i ndi cat or at DS1-1.	-•	- •	-
17	I ndi cator DS1	Measure continuity between DS1-1 and DS1-2.	Measurement indi cates an open circuit.	Repl ace DS1 per paragraph 3-16.	Go to next st ep.

Table 3-5. Fault Locat or PONER I ndicator Does Not Light - Continued

Insure that the two screws hol ding P1 to Alf 1 are loosened evenly by loosening each screw one or two turns at a time to avoid damage to connector.

18	Har ness	Di sconnect P1 from All 1 by Iooseni ng two screws.	-••	. .	-••
19	Harness	Measure continuity between P1-11 and TP16 and bet ween $\mathrm{J} 1-\mathrm{h}$ and TP16.	Measurement indi cates an open circuit.	Repl ace logi c card A1 perpar agraph 3-16b.	Repl ace shorted wire and retest.
20	POVER switch S2	Set to ON.	-••	- .	-
21	Power Suppl y PS1	Measure voltage at PS1 - V+ (+5V OU).	Measurement indi cates $+5 \mathrm{~V}+0.5 \mathrm{~V}$.	Troubl eshoot har ness wiring. Refer to FO- 1.	Go to next step.
22	Power Suppl y PS1	Measure ac voltage at PS1 - AC+.	Measurement is approxi mately 115 Vat.	$\begin{aligned} & \text { Repl ace PS1 } \\ & \text { per para- } \\ & \text { graph 3-16t. } \end{aligned}$	Go to next step.
23	I ndi cator DS1	Reconnect and sol der i ndi cator at DS1-1.	-•	-••	-•
24	Har ness	Reconnect wire to PSI - V+.	-••	- •	-••
$\left\{\begin{array}{c}\text { CAUTION }\end{array}\right.$					

Insure screws are tightened evenly, one turn at a time, to avoid damagi ng connector.

25	Harness	Reconnect P1 to Alj 1 by tighteni ng two screws.	-••	-••	-••
26	Switch S2	I nsure POWER switch is set to ON.		-••	-••
27	Switch S2	Measure continuity bet ween S2-3 and S2-2.	Measurement indi cates a closed circuit.	Troubl eshoot harness wiring. Refer to FO-1.	Repl aceswitch S2per para-1graph 3-16i

Table 3-6. Fault Locator Fails LAMP TEST

St ep	It em	Action	I ndi cation	Yes	No
1	POVER Switch S2	Set to ON.	PONER i ndi cater lights.	Go to next step.	$\begin{aligned} & \text { Go to Tabl e } \\ & \hline 3-5 . \end{aligned}$
2	LAMP TEST Switch S7	Press and hold while observing readouts and i ndi cat ors.	Readout displays are as foll ows:	Rel ease and go to next step.	Rel ease and go to step 4.
			AZI MJH 8888 RANGE 8888		
			ELEVATI ON - 888		
			The following indi cators I ight:		
			PARI TY ENERGY A TRI G OVERTEMP		
3	PONER Switch S2	Set to OFF and then to ON.	All readouts and indi cations go out.	Ret urn fault locat or to servi ce.	Go to next step.
4	POWER Switch S2	Set to OFF.	-••	- ••	- ••
		WA	ING		

When front panel is renoved and power cable WR is connected to facility power, 115 Vac is present at pins of J 2 and S 2 .

CAUTION

Insure that the two screws hol ding P1 to All 1 are loosened evenly by looseni ng each screw one or two turns at a time to avoid damage to connect or.

Di sconnect P1 from A1J 1 by looseni ng two screws.

Test LAMP TEST signal path (from P1-4 to S7-1) for continuity and shorts to ground.
Har ness

Press and hold switch down while determining continuity bet ween S7-1 and S7-2.

Rel ease.

Measurement indi cates con tinuous path (resistance less that 2 ohns) and no shorts to ground.

Measurement i ndi cates less than 2 ohms.
Go to next Step.

Go go next step.

Go to step 13.

Go to step 13.

Table 3-6. Fault Locator Fails LAMP TEST - Continued

Text	Item	Act i on	I ndi cati on	Yes	No
10	Logi c Card A1	$\begin{aligned} & \text { Repl ace per par agraph } \\ & \text { 3-16b. } \end{aligned}$	-•	-•	-••
11	Front Panel	Install pel paragraph	-•	- •	-••
12	Fault Locator	Ret urn to service.	- •	-•	-••
13	LAMP TEST Switch S7	Repl ace LAMP TEST switch S7 or repair harness as necessary.	- •	-•	-••

		screws are tightened ng connector.	t a ti		
14	Har ness	Connect P1 to All 1 by tightening two screws.	-	-•	-
15	Front Panel	$\begin{aligned} & \text { I nstal I per paragraph } \\ & \text { 3-16a. } \end{aligned}$	-	-	-••
16	Faul t Locat or	Return to service.	-••	-•	-

Table 3-7. A TRI G I ndi cator Does Not Li ght

Step	Item	Action	I ndi cation	Yes	No
1	POVER Switch S2	Set to ON.	POWER i ndi cat or li ghts.	Go to next step.	$\begin{aligned} & \text { Go to } \\ & \hline 3-5 . \end{aligned}$
2	LAMP TEST Switch S7	Press and hold.	A TRI G i ndi cat or li ght s.	Go to next step.	$\begin{aligned} & \text { Go to Tabl e } \\ & 3-6 . \end{aligned}$
3	LAMP TEST Switch S7	Rel ease.	A TRI G i ndi cator goes out.	-	-•
4	POWER Switch S2	Set to OFF.	POWER indi cat or goes out.	-••	-
5	Test Cable WZ	Remove from TEST J1 on Fault Locator.	-••	-••	-••
6	Test Cable V L	Measure A-TRI G si gnal path (from V1P2-B to W1P1-B) for continuity.	Measurement indi cates Iess than 2 ohns.	Go to next step.	Repl ace cable.
	WARNING				
When front panel is renoved and power cable WD is connected to facility power, 115 Vac is present at pins of J 2 and S 2.					
7	Front Panel	Remove per paragraph	-•	-	-

CAUTION
Insure that the two screws hol ding P1 to Alf 1 are loosened evenly by looseni ng each screw one or two turns at a time to avoid damage to connector.

8	Har ness	Di sconnect P1 from All 1 by Iooseni ng two screws.	-••	-••	-••
9	Faul t Locat or	Measure A-TRI G si gnal path (fromJ1-B to P1-24) for continuity and shorts to ground.	Measurement indicates less than 2 ohms for conti nuity and an open circuit for shorts to ground.	Go to next step.	Repai r har ness; then proceed to step 11.
10	Logi c Card Al	$\begin{aligned} & \text { Repl ace per paragraph } \\ & \text { 3-16B. } \end{aligned}$	-••	-	-

CAUTION

Insure screws are tightened evenl y, one turn at a time, to avoid damaging connector.

11 Har ness

Connect P1 to All 1 and
secure by ti ght eni ng two screws.

-••

Table 3-7. A TRI G I ndi cator Does Not Li ght - Continued

Step	Item	Action	I ndi cation	Yes	No
12	Front Panel	$\begin{aligned} & \text { Instal I per paragraph } \\ & \text { 3-16a. } \end{aligned}$	- • -	-•	-••
13	Test Cable Vı	Connect to TEST connector J 1 on Fault Locator.	-••	-••	-••
14	Faul t Locat or	Ret urn to service.	-••	-•	-••

Tabl e 3-8. OVERTEMP I ndi cat or Does Not Li ght

Step	Item	Action	I ndi cation	Yes	No
1	PONER Switch S2	Set to ON.	POVER i ndi cat or li ghts.	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & \text { 3-5. } \end{aligned}$
2	LAMP TEST Switch S7	Press and hold.	OVERTEMP i ndi cat or lights.	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & \hline 3-6 . \end{aligned}$
3	LAMP TEST Switch S7	Rel ease.	OVERTEMP indi cator goes out.
4	POWER Switch S2	Set to OFF.	POVER i ndi cat or goes out.
5	Test Cable WL	Renove from TEST Connect or			
6	Test Cable Wı	Measure OVERTEMPERATURE si gnal path (from W1P1-e to W1P2-e) for continuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace cable; then proceed to step 15.

Wen front panel is removed and power cable $W D$ is connected to facility power, 115 Vac is present at pins of $J 2$ and $S 2$.

CAUTION

I nsure screws are tightened evenl y, one turn at a time, to avoid damaging connector.
11 Harness
Connect P1 to All 1 and secure by tightening two screws.

Table 3-8. OVERTEMP I ndi cator Does Not Li ght - Continued

St ep	Item	Action	I ndi cation	Yes	No
12	Front Panel	$\begin{aligned} & \text { Instal\| per paragraph } \\ & \text { 3-16a } \end{aligned}$	-••	-••	-•
13	Test Cable W1	Connect to TEST connector Jl on Fault Locator.	-••	-••	-
14	Fault Locator	Return to service.	-••	-••	-•

Table 3-9. PARI TY or ENERGY FAIL I ndicators Do Not Li ght

St ep	Item	Action	I ndi cation	Yes	No
1	POVER Switch S2	Set to ON .	PONER i ndi cat or I i ght s.	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & {[3-5 .} \end{aligned}$
2	LAMP TEST Switch S7	Press and hold.	PARITY and ENERGY FAI L indi cators light.	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & \hline 3-6 . \end{aligned}$
3	LAMP TEST Switch S7	Rel ease.	PARI TY and ENERGY FAI L indicators go out.	-•	-•
4	POUER Switch S2	Set to OFF.	POVER indi cat or goes out.	-	-•
5	Test Cable VL	Remove from TEST connect or J1 on Fault Locator		-••	-
6	Test Cable V1	Measure COMPUTER WORD si gnal path (from W1P1-f to W13-B) for conti nuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace cable; then proceed to step 15.

WARNING

When front panel is removed and power cable WR is connected to facility power, 115 Vac is present at pi ns of J 2 and S2.

7 Front Panel

CAUTION
I nsure that the two screws hol ding P1 to AlJ 1 are loosened evenl y by loosening each screw one or two turns at a time to avoid damage to connector.

8	Har ness	Di sconnect P1 from A1J 1 by I ooseni ng two screws.		-••	-••
9	Har ness	Measure COMPUTER WORD signal path (fromJ1-f to P1-5) for conti nuity and for shorts to ground.	Measurement indi cates less than 2 ohns for conti nuity and an open circuit for shorts to ground.	Go to next step.	Repai r harness; then proceed to step 11.
10	Logi c Card A1	Repl ace per paragraph 3-166.		-••	-

CAUTION

I nsure screws are tightened evenly, one turn at a time, to avoid damaging connector.

11
Har ness
Connect P1 to All 1 and
secure by ti ght eni ng
two screws.
$\mid \quad . . . \quad \cdots \cdot$

Table 3-9. PARI TY or ENERGY FAI L I ndi cators Do Not Li ght - Conti nued

St ep	Item	Action	I ndi cation	Yes	No
12	Front Panel	$\begin{aligned} & \text { Instal I per paragraph } \\ & \text { 3-16a } \end{aligned}$	-••	-••	- •
15	Test Cable V1	Connect to TEST connector J1 on Fault Locator.	-••	-•	- •
16	Fault Locat or	Return to service.	-••	-••	-••

Table 3-10. Fault Locator Readouts Fail or Are Incorrect

St ep	Item	Action	I ndi cation	Yes	No
1	POWER Switch S2	Set to ON.	POVER i ndi cat or li ghts.	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & \text { 3-5. } \end{aligned}$
2	LAMP TEST Switch S7	Press and hold.	Readouts di splay as foll ous:	Go to next step.	$\begin{aligned} & \text { Go to Table } \\ & \text { 3-6. } \end{aligned}$
			AZI MTH 8888 RANGE 8888 ELEVATI ON -888		
3	LAMP TEST Switch S7	Rel ease.	Readout di spl ays go out.	-•	-•
4	PONER Switch S2	Set to OFF.	POWER i ndi cator goes out.	-	-•
5	Test Cable Wı	Remove from TEST connect or J1 on Fault Locator,	-••	-	- •
6	Test Cable Wı	Measure COMPUTER UORD signal path (from VZP1-f to W1P3-B) for continuity.	Measurement indi cates than 2 ohns.	Go to next step.	Repl ace cable; then proceed to step 13.

When front panel is removed and power cable WD is connected facility power, 115 Vac is present at pins of J 2 and S 2.

CAUTION

I nsure that the two screws hol ding P1 to AlJ 1 are loosened evenly by loosening each screw one or two turns at a time to avoid danage to connector.

8
Har ness

Har ness

Logi c Card A1
Di sconnect P1 from AlJ 1 by
I ooseni ng two screws.

Measure COMPUTER WORD si gnal path (from P1-5 to J 1-f) for continuity and for shorts to ground.

Repl ace per paragraph 3-16b.

Measurement indi cates less than 2 ohns for continuity and an open circuit for shorts to ground.

Go to next step.

Repai r harness; then proceed to step 11.

Insure screws are tightened evenly, one turn at a tire, to avoid danaging connector.
11 Harness
Connect P1 to A1] 1 and secure by ti ght eni ng two screws.
-• d

Table 3-10. Fault Locator Readouts Fail or Are incorrect - Continued

St ep		Item	Action	I ndi cati on	Yes	No
12	Front	Panel	$\begin{aligned} & \text { Instal I per paragraph } \\ & \begin{array}{l} \text { 3-16む, } \end{array} \\ & \hline \end{aligned}$	-••	-•	
13	Test	Cable Wı	Connect to TEST connector J1 on Fault Locator.		-••	-•
14	Faul t	Locat or	Ret urn to service.	-••	-••	-•

Table 3-11. TEST SELECT Meter Indi cations Are Incorrect

Step	Item	Action	I ndi cati on	Yes	No
1	POWER Switch S2	Set to OfF.	-••	$\cdots \cdot$	-•
2	Test Cable W L	Renove from TEST connector J1 on Fault Locator.	-•	-•	-•
WARNING					

When front panel is removed and power cable WR is connected to facility power, 115 Vac is present at pins of J 2 and S2.

3 Front Panel

Insure that the two screws hol ding P1 to A1J 1 are loosened evenly by loosening each screw one or two turns at a time to avoid damage to connector.

4

5

6 7

Faul t Locat or
TEST SELECT Met er
Harness
TEST SELECT
Meter
Faul t Locat or
ault Locat or

Di sconnect P1 from All 1
by I ooseni ng two screws.
Di sconnect terni nal of
met er by renoving nut and
washers.
Set TEST SELECT switch to
indi cat ed position and
measure continuity bet ween
S56 pin C and the
indi cated points.
TEST SELECT

Measurement i ndi cates as listed bel ow. I ndi cat i on	Go to next step.	Repai r or repl ace S5 or repai r faulty wiring; then proceed to step 24.
27 kilohns to 33 kilohns 16. 8 kilohns to 20.5 kilohns 5. 5 kil ohns to 6.8 kilohnฐ 5.5 kil ohns to 6.8 kilohns 16. 8 kilohns to 20.5 kilohns less than 2 ohns Less than 2 ohns Less than 2 ohns		
Measurement i ndi cates an open circuit.	Go to next step.	Repai r or repl ace S5 or repai r Faulty wiring; then proceed to step 24.

Table 3-11. TEST SELECT Meter Indications Are Incorrect - Continued

Step	Item	Action	I ndi cati on	Yes	No
8	Faul t Locator	Set TEST SELECT switch to indicated position and measure continuity bet ween S5C pin C and the indi cate points.	Measurement indi cates less than 2 ohns.	Go to next step.	Repai r repl ace or repa faulty ing; the proceed step 24.
9	Faul t Locator	Measure continuity bet ween TP16 and the following points: $\begin{aligned} & \frac{\mathrm{Pin}}{\mathrm{n}} \\ & \mathrm{~J} 1-\mathrm{F} \\ & \mathrm{Pl}-8 \\ & \mathrm{P}-10 \end{aligned}$	Measurement indi cates an open circuit.	So to next step.	Repai r w ing then proceed step 24.
10	Faul t Locat or	Set TEST SELECT switch to indicated position and measure continuity bet ween TP4 and the indi cated points.	Measurement i ndi cates 95 to 105 ohns.	Go to next step.	Repai 01 repl ace or repai r faulty w ing; then proceed step 24.
11	Fault Locat or	Measure continuity bet ween TP16 and the following points:	Measurement indi cates an pen circuit.	Go to next step.	Repai r c repl ace or repai r faulty ing; then proceed step 2

Table 3-11. TEST SELECT Meter Indications Are Incorrect - Continued

St ep	It em	Action	I ndi cati on	Yes	No
12	Test Cable W1	Measure continuity bet ween KLP1 pi ns and KLP2 pins listed bel ow.	Measurement indicates less less than 2 ohns.	Go to next step.	Repl ace cable.
13	Test Cable V1	Measure continuity between KLP1 ping and the following WIP1 pins: Pin $\stackrel{a}{x}$ Y F V C E	Measurement indi cates an open circuit.	Go to next st ep.	Repl ace cable.
14	TEST SELECT Switch	Set to +5 VDC.	- . .	-	-••
15	TEST SELECT Met er	Reconnect (-) terminal of meter; secure with washers and nut.	- • •	-•	- .
16	Har ness	Connect P1 to Alj 1 by tightening two screws.	- •	-	- .
17	Test Cable W1	Connect to TEST connector J1 on Fault Locator.	- . .	-	- •
18	J umper	Connect j umper between pin K1P2-h and E19.	- .	-	-•
19	POVER Switch S2	Set to ON.	POMER indi cat or lights. TEST SELECT meter indi cates in green band.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { met er } \\ & \text { per par a. } \\ & \begin{array}{l} \text { 3-160. } \\ \text { Proceed } \\ \text { to st ep } 26 . \end{array} \end{aligned}$

Table. 3-11. TEST SELECT Meter Indi cations Are Incorrect - Continued

Step	Item	Action	I ndi cati on	Yes	No
20	POWER Switch S2	Set to OFF.	-••	-••	-•
21	J umper	Di sconnect from MLP2-h and E19.	-••	-••	-•
22	Front Panel	$\begin{aligned} & \text { Instal I per paragraph } \\ & \text { 3-16a. } \end{aligned}$	-••	-••	-•
23	Faul t Locat or	Return to service.	-••	-••	-•

CAUTION
Insure screws are tightened evenly, one turn at a tire, to avoid damaging connector.

24	Har ness	Connect P1 to All 1 by tightening two screws.	-••	-•	- -
25	TEST SELECT Met er	Reconnect (-) terminal of meter; secure with washers and nut.	-	-••	-••
26	Front Panel	$\begin{aligned} & \text { I nstal I per paragraph } \\ & \text { 3-16ä. } \end{aligned}$	-•	-•	-••
27	Faul t Locat or	Return to service.	-••	-••	-••

Table 3-12. LASER Switch S1 Circuit Fails

Table 3-12. LASER Switch S1 Circuit Fails - Continued

Step	Item	Action	I ndi cati on	Yes	No
13	Test Cable 'd	Measure continuity from WZP1 pin to MLP2 pin.	Measurement indi cates an open circuit.	Go to next step.	$\begin{aligned} & \text { Go to step } \\ & 17 . \end{aligned}$
14	LASER Switch S1	Repai r or replace S1; repair harness.	-••	-••	-••
15	Front Panel	Install per paragraph 3-16а.	-••	-••	-••
16	Faul t Locator	Return to service.	-••	-••	-••
17	Test Cable Wı	Repl ace cable.	-••	-••	-••
18	Front Panel	$\begin{aligned} & \text { Instal I per paragraph } \\ & \text { 3-16a. } \end{aligned}$	-••	-••	-••
19	Fault Locator	Return to service.	-••	-••	-••

Table 3-13. HVPS Switch S8 Circuit Fails

When front panel is renoved and power cable WD is connected to facility power, 115 Vac is present at pins of J 2 and S 2.
$2 \mid$ Front Panel

Insure that the two screws hol ding P1 to Alf 1 are loosened evenly by looseni ng each screw one or two turns at a time to avoid damage to connector.

3	Har ness	Di sconnect Pl from Alj 1 by Ioosening two screws.	-••	-••	-••
4	HVPS Switch S8	Set to INHBIT.	-••	-••	-••
5	Har ness	Measure HVPS INHBIT SW si gnal path (from ground to pi n P1-22) for continuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 14.
6	HVPS Switch S8	Set to ENABLE.		-	-••
7	Har ness	Measure HVPS INHIBIT SW si gnal path (from ground to pi n P1-22) for an open circuit.	Measurement i ndi cates an open circuit.	Go to next step.	Go to step 14.
8	Har ness	Measure $\overline{\text { HVPS INHI BIT }}$ si gnal path (from P1-23 to W1P2-M) for continuity.	measurement indi cates \| ess than 2 ohns.	Go to next st ep.	Go to step 10.
9	Har ness	Measure OVERTEMPERATURE si gnal path (from V1P1-e to P1-25) for continuity.	Measurement indi cates less than 2 ohns.	$\begin{aligned} & \text { Go to step } \\ & 17 \text {. } \end{aligned}$	$\begin{aligned} & \text { Go to step } \\ & 12 \text {. } \end{aligned}$
10	Test Cable W1	Renove from TEST connector J 1.	-••	-•	-••
11	Test Cable W1	Measure $\overline{\mathrm{HVPS}} \mathrm{INHIBIT}$ signal path (from VLP1-M to W1P2-M) for continuity.	Measurement indi cates an open circuit.	$\begin{aligned} & \text { Go to step } \\ & 15 . \end{aligned}$	Go to step 16.
12	Test Cable V1	Renove from TEST connector J 1.	-••	-	-•
13	Test cable W1	Measure OVERTEMPERATURE si gnal path (from W1P1-e to WZP2-e) for continuity.	Measurement indi cates an open circuit.	$\begin{aligned} & \text { Go to step } \\ & 15 . \end{aligned}$	$\begin{aligned} & \text { Go to step } \\ & 16 . \end{aligned}$
14	HVPS Switch S8	Repl ace switch oer para. 3-16n, then proceed to step 17.	-••	. . .	-••

Table 3-13. HVPS Switch S8 Circuit Fails - Continued

Step	Item	Action	I ndi cation	Yes	No
15	Har ness	Repai r harness, then proceed to step 17.	. . .	-•	- •
16	Test Cable W1	Repl ace cable.		-•	-••
17	POVER Switch S2	Set to ON.	-. .	-••	- • •
18	HVPS Switch S8	Set to ENABLE.		-••	- •
19	Har ness	Measure dc volts between K1P2-M and TP16.	Measurement i ndi cates +4. 5 to +5.5 volts.	Go to next step.	Go to step 22.
20	HVPS Switch S8	Set to INHBIT.		-••	- •
21	Har ness	Measure dc volts between W1P2-F1 and TP16.	Measurement indi cates O to 0.5 volts.	Go to step 23.	Go to step 22.
22	Logi c Card Al	$\begin{aligned} & \text { Repl ace per paragraph } \\ & \text { 3-166. } \end{aligned}$. . .	- •	-••

Table 3-14. PRESET RANGE Switch S6 Circuit Fails

Step	Item	Action	Indication	Yes	No
1	PONER Switch S2	Set to OFF.	\ldots.	\ldots	. . .

WARNING

When front panel is renoved and power cable WD is connected to facility power, 115 Vac is present at pins of J 2 and S 2.

$2 |$| Front Panel |
| :--- | :--- |

CAUTION

Insure that the two screws hol ding P1 to Alf 1 are loosened evenly by Ioosening each screw one or two turns at a time to avoid damage to connector.

Table 3-14. PRESET RANGE Switch S6. Circuit Fails - Continued

Step	Item	Action	Indication	Yes	No

Insure screws are tightened evenl y, one turn at a time, to avoid damagi ng connector.

14	Har ness	Connect P1 to Alj 1 by tightening two screws.	-••	-••	-*
15	PONER Switch S2	Set to ON.	POWER i ndi cat or li ghts.	Go to next step.	$\frac{60 \text { to }}{3-5 .} \text { table }$
16	PRESET RANGE Switch S6	Set to ON.	-••	. . .	-••
17	Har ness	Measure voltage from W1P2-j to TP16.	Measurement i ndi cates 3. 9 ± 1.5 volts.	Go to next step.	$\begin{aligned} & \text { Go to step } \\ & 24 . \end{aligned}$
18	PRESET RANGE Switch S6	Set to OFF.	-	. . .	-••
19	Har ness	Measure voltage from W1P2-j to TP16.	Measurement i ndi cates 3.9 ± 1.5 volts.	Go to step 26.	$\begin{aligned} & \text { Go to step } \\ & 24 . \end{aligned}$
20	PONER Switch S2	Set to OFF.	POWER i ndi cator goes out.		
21	PRESET RANGE Switch S6 or Harness	Repai r or repl ace 56 or repai r harness; then proceed to step 25.	-••	-	-••
22	Harness	Repai r harness; then proceed to step 25.	-••	- • •	-•
23	Test Cable W1	Repl ace cabl e; then proceed to step 25.	-•	-•	-•
24	Logi c Card A1	$\begin{aligned} & \text { Repl ace per paragraph } \\ & \text { 3-16b. } \end{aligned}$	-•	-	-•
25	Har ness	Connect P1 to All 1 connector by tight eni ng two screws.	-••	-••	-••
26	Front Panel	Instal\| front panel per paragraph 3-16a.	-•	-•	-•
27	Test Cable W1	Connect to TEST connect or J1 on Fault Locator.	-••	-•	-••
28	Faul t Locat or	Ret urn to service.	-••	-••	

Table 3-15. SI MMER SENSE Faul t

St ep	It em	Act i on	I ndi cation	Yes	No
1	POWER Switch S2	Set to OFF.	-••	-••	-••
2	Fault Locat or	Measure continuity bet ween WLP2 pin G and center pin of J 3 .	Measurement indi cates I ess than two ohms.	Go to next step.	Go to step 4.
3	Fault Locat or	Measure continuity between WZP2 pin G and VZP2 ping.	Measuret nent i ndi cates an open circuit.	Go to step 13.	Go to step 4.
4	Test Cable V1	Renove from TEST connector Jl on Fault Locator.	-••	-•	-•
5	Test Cable V1	Measure continuity bet ween connector K1P2 pin G and V1P1 pi n G.	Measurement i ndi cates less than 2 ohns.	Go to next st ep.	Go to step 10.
6	Test Cable V1	Measure continuity between connector WLP2 pin G and WZP2 ping.	Measurement indi cates an open circuit.	Go to next step.	Go to step 10.
7	Har ness	Measure continuity bet ween connect or J1-G and J 3.	Measurement indi cates Iess than 2 ohns.	Go to next step.	Go to step 11.
8	Har ness	Measure continuity bet ween connect or J1-G and TP16.	Measurement indi cates an open circuit.	Go to next st ep.	$\begin{aligned} & \text { Go to step } \\ & \text { 11. } \end{aligned}$
9	Faul t Locat or	Return to service.	-••	-••	-•
10	Test Cable V1	Repl ace cabl e; then proceed to step 12.	-••	-••	-••
11	Har ness	Repair failed harness wire.	-•	-••	-•
12	Test Cable W1	Connect to TEST connector J1 on Fault Locator.	-••	-•	-••
13	Faul t Locat or	Ret urn to service.	-••	-••	- •

Tabl e 3-16. Test Point (1, 2, 5, 10, 11, 14, 15) Fault

Table 3-16. Test Point (1, 2, 5, 10, 11, 14, 15) Fault - Conti nued

Step	Item	Action	I ndi cation	Yes	No
8	Test Cable WV	Measure continuity bet ween KLP2 pin and KLP1 ping.	Measurement indi cates an open circuit.	Go to next step.	Go to step 12.
9	Har ness	Measure continuity bet ween failed test point and Jl.	Measurement indi cates 950 to 1050 ohns.	Go to next step.	Go to step 13.
10	Harness	Measure continuity bet ween Jl pin and TP16.	Measurement I ndi cates an open circuit.	Go to next step.	Go to step 13.
11	Fault Locator	Return to service.	-••	-••	-••
12	Test Cable V1	Repl ace cable.	-••	-••	-••
		WAR	IING		

When front panel is removed and power cable WD is connected to facility power, 115 Vac is present at pins of F1 and S2.

13
Front Panel

| Renoye |
| :--- | :--- |
| 3-16व. |
| per paragraph |$| \ldots$

TM 9-4931-477-14

Table 3-16. Test Point (1, 2, 5, 10,.11, 14, 15) Fault - Conti nued

St ep	Item	Action	I ndi cation	Yes	No
14	Harness or Resi stor	Repai r harness or replace failed resistor as foll ows:	-••	-	-
15	Front Panel	$\frac{\text { Instal I per paragraph }}{3-16 a}$	-	- • -	-•
16	Test Cable W4	Connect to TEST connector J1 on Fault Locator.	-••	-••	- •
17	Faul t Locat or		-••	-••	-••

Table 3-17. Test Poi nt $(3,6,7,8,9,12,13,16)$ Fault

St ep	Item	Action	I ndi cation	Yes	No
1	POWER Switch S2	Set to OFF.	-•	-•	-••
2	Faul t Locat or	Measure continuity bet ween W1P2 pin and test point.	Measurement indicates Iess than 2 ohns.	Go to next st ep.	Go to step 6.
		TP W1P2 Signal			
		3 U RECEIVER START-TA 6 H EVENTS COUNT-TA 7 L 20 KHz CLOCK-TA 8 J HVPS ENABLE-TA 9 A SHIELD RETURN 12 K TIMING GATE-TA 13 W PFN CHARGED 16 9 RETURN-TA			
3	Faul t Locat or	Measure continuity bet ween WLP2-g and test point.	Measurenent indi cates an pen circuit.	Go to next step.	Goto step 6.
4	Test Cable Wı	Measure continuity between WLP2-A and KLP2-g.	Measurement i ndi cates less than 2 ohns.	Go to next st ep.	Go to step 6.
5	Faul t Locat or	Ret urn to service.	-	. . .	- .
6	Test Cable W4	Renove from TEST connector Jl on Fault Locator.	-•	.	- . .
7	Test Cable W1	Measure continuity between KLP2 pin and KLP1 pin. W1P 2 WIP 1	Measurement indi cates less than 2 ohns.	Go to next step.	$\begin{aligned} & \text { Go to step } \\ & \text { 12. } \end{aligned}$
		U U H H L L J J A A K K W W G G			

Table 3-17. Test Poi nt (3, 6, 7, 8, 9, 12, 13, 16) Fault - Continued

When front panel is removed and power cable $W \mathbb{Z}$ is connected to facility power, 115 Vac is present at pins on J 2 and S 2.

Table 3-17. Test Point (3, 6, 7, 8, 9, 12, 13, 16) Fault - Conti nued

Step	Item	Action	I ndi cation	Yes	No
14	Har ness	Repair failed wiring.	-••	-••	-••
15	Front Panel	$\begin{aligned} & \text { Instal \| per paragraph } \\ & \text { 3-16a. } \end{aligned}$	-••	-••	-••
16	Test Cable WI	Connect to TEST connector J1 on Fault Locator.	-••	-••	-
17	Fault Locat or	Return to service.	-••	-••	-••

Table 3-18. Power Cable (VD) Fault

Step	Item	Action	I ndi cati on	Yes	No
1	POVER Switch S2	Set to OFF.	-••	-••	-••
2	Power Cable UR	Renove from PONER connect or J2 on Fault Locat or.	-••	-••	-
3	Power Cable UR	Measure continuity between URP1 pin and URP2 pin. WRP1 WRP2	Measurement indi cates Iess than 2 ohns.	Go to next step.	Go to step 6.
4	Power Cable VR	Measure continuity between WRP1 pin and VRP1 pin 2. VRP1	Measurement indi cates an open circuit.	Go to next step.	Go to step 6.
5	Fault Locat or	Return to service.	-••	-••	-••
6	Power Cable VR	Repl ace cable.			-••
7	Fault Locator	Return to service.	-••	-••	-••

Table 3-19. Test Cable (V1) Fault

Table 3-20. LASER Switch S9 Circuit Fails

Step	Item	Action	Indi cation	Yes	No
1	PONER Switch S2	Set to OFF.	\ldots.	\ldots	\ldots

WARNING

Wen front panel is renoved and power cable WD is connected to facility power, 115 Vac is present at pins of 12 and S 2.					
2	Front Panel	Renove per paragraph 3-160.	- . .	- .	-
Insure that the two screws hol ding Pl to All 1 are loosened evenly by Ioosening each screw one or two turns at a time to avoid damage to connector.					
3	Har ness	Di sconnect P1 from A1] 1 by loosening two screws.	-••	-••	- .
4	Har ness	Measure BATTERY VOLTAGE si gnal path (from W1P1-a to relay contact K1-B2) for conti nuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 7.
5	Har ness	Measure FIRE REMDTE si gnal path (from W1P1-b to rel ay contact K1-A1) for continuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 7.
6	Har ness	Measure FIRE REMDTE signal path (from W1P1-T to relay contact K1-B1) for conti nuity.	Measurement indi cates less than 2 ohns.	Go to step 11.	Go to next step.
7	Test Cable W1	Renove from Fault Locat or.	-••	-••	-•
8	Test Cable W1	Measure BATTERY VOLTAGE si gnal path (from K1P1-a to W1P2-a) for continuity.	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 16.
9	Test Cable W1	Measure FIRE REMDTE si gnal path (from V1P1-b to WIP2-b) for continuity.	Measurement indicates less than 2 ohns.	Go to next step.	Go to step 16.
10	Test Cable W1	Measure FI RE REMDTE si gnal path (from K1P1-T to WIP2-T) for continuity.	Measurement Indi cates \|ess than 2 ohns.	Repl ace cable.	Go to step 16.
11	LASER Switch S9	Measure continuity from switch contacts: $\begin{aligned} & \text { S9-2C to } \mathrm{S9}-2 \mathrm{NO} \\ & \mathrm{S9-1C} \text { to } \mathrm{S9-1NC} \end{aligned}$	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 15.

Table 3-20. LASER Switch S9 Circuit Fails - Continued

Step	Item	Action	I ndi cati on	Yes	No
12	LASER Switch S9	Hold to START position while measuring continuity from switch contacts: $\begin{aligned} & \text { S9-2C to S9-2NC } \\ & \text { S9-1C to S9-1NO } \end{aligned}$	Measurement indicates less than 2 ohns.	Go to next step.	Go to step 15.
13	LASER Switch S9	Rel ease to $O N$ position while measuring continuity from $\begin{aligned} & \text { S9-2C to S9-2NC } \\ & \text { S9-1C to S9-1NC } \end{aligned}$	Measurement indi cates less than 2 ohns.	Go to next step.	Go to step 15.
14	K1 Rel ay	Replace K1 relay per paragraph 3-169, then proceed to step 17.	-••	-••	-••
15	LASER Switch S9	Repl ace 59 per par agraph3-16n, step 17 . .	-••	-••	-••
16	Test Cable WI	Repl ace test cable \mathbf{W}, then proceed to step 17.	-•	-••	-••

Insure screws are tightened evenly, one turn at a time, to avoid danagi ng connector.

17	Har ness	Connect P1 to A1] 1 by tightening two screws.	-••	-••	-••
18	Front Panel	$\begin{aligned} & \text { Instal \| per paragraph } \\ & \text { 3-16a. } \end{aligned}$	-••	-••	-••
19	Faul t Locat or	Return to service.	-••	-••	-••

Table 3-21. TESTER ON I ndi cat or XDS2 Does Not Light

Step	Item	Action	I ndi cation	Yes	No
1	RCT Cable UR	Renove from +24 VDC connect or J1 on RCT.	-••	-••	-••
2	TESTER ON I ndi cat or Bul b DS2	Unscrew bul b from front panel.	-••	-••	-••
3	TESTER ON Indi cat or Bulb DS2	Measure continuity of bul b DS2.	Measurement indi cates an open circuit.	Repl ace faul ty bul b.	Go to next step.
4	Front Panel	$\begin{aligned} & \text { Renove per paragraph } \\ & \text { 3-17a. } \end{aligned}$	-••	-•	-••
5	MDDE Switch S1	Set to AZ ADJ		-••	-••
6	$\begin{aligned} & \text { Bul bhol der } \\ & \text { XDS2 } \end{aligned}$	Measure continuity of bul bhol der XDS2 (wi thout bulb DS2 installed).	Measurement indi cates a short.	$\begin{aligned} & \text { Repl ace } \\ & \text { XDS2 per } \\ & \text { paragraph } \\ & \hline 3-17 i \\ & \hline \end{aligned}$	Go to next step.
7	Bul bhol der XDS2	Screw bulb DS2 into bul bhol der XDS2.	-••	-•	-••

NOTE
In following step, insure MODE switch is set to $A Z A D$.

8	$\begin{aligned} & \text { Bul bhol der } \\ & \text { XDS2 } \end{aligned}$	Measure continuity of bul bhol der XDS2.	Measurement i ndi cates an open circuit.	Repl ace faul ty bul bhol der XDS2 per par agraph 3-17i.	Go to next step.
9	Front Panel	Measure continuity from connect or J 1 pi ns K and Z (Fi gure FO-3).	Measurement indi cates an open circuit.	Faul ty wiring is i ndi cated. Tr oubl eshoot using RCT schematic di agram (Fi gure (F0-3):	Go to next step.
10	RCT Cable UR	Measure continuity from (Fi gure FO-3):	Measurement indi cates less than 2 ohns.	Go to next st ep.	Repl ace RCT Cable VD and retest.
11	RCT	Instal\| front panel per paragraph 3-17d and return to service.	-••	-••	-

Tabl e 3-22. LASER ARMED I ndi cat or XDS1 Does Not Light

Step	Item	Action	I ndi cat i on	Yes	No
1	RCT Cable UR	Renove from +24 VDC connector J1 on RCT.	-••	-••	-••
2	LASER ARMED I ndi cat or Bul b DS1	Unscrew bulb from front panel.	-••	-••	-
3	FASER ARMMEB nd DS1	Measure continuity of bul b DS1.	Measurement indi cates an open circuit.	Repl ace faulty bul b.	Go to next step.
4	Front Panel	$\begin{aligned} & \text { Renove per paragraph } \\ & \text { 3-17a. } \end{aligned}$	-••	-••	-••
5	MODE Switch S1	Set to DES.	-••	-••	-••
6	TESTER ON I ndi cat or Bul b DS2	Unscrew bulb DS2.	-•	-••	-•
7	Bul bhol der XDS1	Measure continuity of bul bhol der XDS1 (wi thout bulb DS1 installed).	Measurement indicates a short.	$\begin{aligned} & \text { Repl ace } \\ & \text { bul bhol der } \\ & \text { XDS1 per } \\ & \text { paragraph } \\ & \text { 3-1/1. } \end{aligned}$	Go to next step.
8	Bul bhol der XDS1	Screw bulb DS1 into bul bhol der XDS1.	-••	-••	- •
9	Bul bhol der XDS1	Measure continuity of bul bhol der XDS1.	Measurement indi cates an open circuit.	Repl ace faulty bul bhol der XDS1 per paragraph 3-17i.	Go to next step.
10	Front Panel	Set MDDE switch to DES and measure continuity bet ween connect or 11 pi ns K and Z (Fi qure FO-3).	Measurement indi cates an open circuit.	Faul ty wi ring is i ndi cat ed. Tr oubl eshoot using RCT schematic di agram (Figure (FO-3).	Go to next step.
11	TESTER ON Indi cator Bulb DS2	Screw bulb DS2 into bul bhol der XDS2.	-••	-•	-••
12	RCT Cable UR	Measure continuity from	Measurement indicates Iess than 2 ohns.	Go to next step.	Repl ace RCT Cable VD and retest.
13	RCT	Instal\| front panel per paragraph 3-17a and return to service.	-••	-••	- •

Table 3-23. Test Point (1, 2, 3) Fault

St ep	Item	Action	I ndi cati on	Yes	No
1	RCT Cable VR	Renove from +24 VDC connector Jl on RCT.	-••	- .	-••
2	Front Panel	Measure continuity from connect or Jl pin to test poi $n t$ (Fi gure FO-3). L1 to Test Point $\begin{array}{ll}\mathrm{S} & 1 \\ \mathrm{~T} & 2 \\ \mathrm{a} & 3\end{array}$	Measurement indi cates less than 2 ohns.	Go to next step.	Check wi ring/ test point, repl ace as requi red. Ref er to par agraph 3-17d.
3	Front Panel	Measure continuity from connector Jl pin K to connect or 11 pins S, T , and a (Fi gure FO-3)	Measurement indi cates an open circuit.	Go to next step.	Repl ace Test Poi nt per par agraph 3-17d.
4	RCT Cable WR	Measure continuity from (Fi gure FO-3):	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace RCT Cable VR and retest.
5	RCT	Return to service.	-••		-••

Table 3-24. Code Switch Circuit Fails

St ep	Item	Action	I ndi cati on	Yes	No
1	RCT Cable WR	Renove from +24 VDC connector J1 on RCT.	-••	-••	-••
2	Front Panel	Set code switch C to 1.	-••	-••	-••
3	Front Panel	Measure continuity from connector Jl pin K to: $\llcorner 1 \text { (Fi gure FO-3) }$	Measurement indi cates less than 2 ohns.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { swi tch } 57 \\ & \text { per } \\ & \text { paragraph } \\ & \hline 3 \text { - } 176 . \end{aligned}$
4	Front Panel	Set code switch C to 8.	-••	-••	-••
5	Front Panel	Measure continuity from connector Jl pin K to: $\llcorner 1 \quad \text { Fi gure FO-3) }$	Measurement indi cates an open circuit.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { swi tch S7 } \\ & \text { per } \\ & \text { par agraph } \\ & \text { 3-17e. } \end{aligned}$
6	Front Panel	Set code switch B to 1.	-••	-••	-••
7	Front Panel	Measure continuity from connector Jl pin K to: L1 Figure FO-3)	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace switch S6 per par agraph 3-176
8	Front Panel	Set code switch B to 8.	-••	-••	-••
9	Front Panel	Measure continuity from connect or Jl pin K to: L1 (Fi gure FO-3) D E F	Measurement indi cates an open circuit.	Go to next. step.	Repl ace switch S6 per par agraph 3-17ब.
10	Front Panel	Set code switch A to 1.	-••	-••	-••
11	Front Panel	Measure continuity from connector Jl pin K to: L1 (Fi gure FO-3) G j	Measurement indicates Iess than 2 ohns.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { switch S5 } \\ & \text { per } \\ & \frac{\text { paragraph }}{3-17 e .} \end{aligned}$
12	Front Panel	Set code switch A to 8.	-••	-••	-••

TM 9-4931-477-14

Table 3-24. Code Switch Circuit Fails - Continued

Step	Item	Action	I ndi cation	Yes	No
13	Front Panel	Measure continuity from connector Jl pin K to: $\lcm{ } 1$ Fi gure FO-3) G	Measurenent indi cates an open circuit.	Go to next step.	Repl ace swi tch S5 per par agraph $3-17 \mathrm{e}$.
14	RCT Cable UR	Measure continuity from (Fi gure FO-3):	Measurement indi cates Iess than 2 ohns.	Go to next step.	Repl ace cable WR and retest.
15	RCT	Renove front panel per paragraph 3-179.	-••	-••	-••
16	Front Panel	Check wiring and sol dered connections for breakage or damage.	Breakage or damage exi sts.	Repai r as requi red.	Go to next step.
17	RCT	Instal\| front panel per paragraph 3-177. and return to service.	-•	-••	-••

TM 9-4931-477-14

Table 3-25. RETI CLE BRI GHTNESS Control R2 Circuit Fails

Step	Item	Action	I ndi cation	Yes	No
1	RCT Cable VR	Renove from +24 VDC connector on RCT.	-••	-••	-••
2	Front Panel	Set RETI CLE BRI GTTNESS knob to extreme clockwi se (cw) position and measure continuity from R2 pin 1 to R2 pin 3 (Figure FO-3).	Measurement i ndi cates less than 50 ohns.	Go to next step.	Repl aceR2 perpar agraph $3-171$
3	Front Panel	Set RETI CLE BRI GHTNESS knob to extrene countercl ockwi se (ccW) position and measure continuity from R2 pin 1 to R2 pin 3.	Measurement indi cates approxi matel y 5 kilohns.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { R2 per } \\ & \text { paragraph } \\ & \frac{\text { palij }}{} \end{aligned}$
4	Front Panel	Set RETI CLE BRI GHTNESS knob to extrene clockwi se (cw) position and measure continuity from connect or $\downarrow 1$ pin R to J 1 pin Z (Fi gure FO-3).	Measurement indi cates approxi matel y 510 ohns.	Go to step 7.	Go to next step.
5	RCT	Remove front panel per paragraph 3-17a.	-••	-	-••
6	Front Panel	Measure continuity from RCT connector J1 pin R to terminal E2.	Measurement indi cates approxi matel y 510 ohns.	Faul ty wi ring is i ndi cat ed. Troubl eshoot using RCT schematic di agram (Figure (FO-3).	$\begin{aligned} & \text { Repl ace } \\ & \text { resi st or } \\ & \text { R1 per } \\ & \hline \text { paragraph } \\ & \hline 3-174 . \\ & \hline \end{aligned}$
7	RCT Cable WR	Measure continuity from (Figure FO-3): $\begin{array}{ccc} \text { WRP1 } & \text { to } & \text { VRP2 } \\ R & & R \\ Z & & Z \\ K & & K \end{array}$	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace RCT Cable VD and retest.
8	RCT	Install front panel per paragraph 3-17a. and return to service.	-	-••	-••

Table 3-26. LASER FIRE Switch S4 Circuit Fails

Step	Item	Action	I ndi cati on	Yes	No
1	RCT Cable UR	Renove from +24 VDC connector Jl on RCT.	-••	-	-
2	RCT	Renove front panel per paragraph 3-17a.	-•	-••	-••
3	Mbde Switch S1	Set to DES.			
4	Front Panel	Set and hold LASER FIRE switch S4 to ON and measure continuity from S4 Pin 1 to S4 pin 2 and from S4 pin 4 to 54 pin 5 Fi gure FO-3).	Measurement indi cates Iess than 2 ohns.	Go to next step.	Repl aceswi tch S4perpar agraph 3-171).
5	Front Panel	Set LASER FIRE switch S4 to OFF and measure continuity from S4 pin 1 to S4 pi n 2 and from S4 pin 4 to 54 pin 5 Fi gure FO-3)	Measurement indi cates an open circuit.	Go to next step.	Repl ace switch $S 4$ per paragraph 3-17h.
6	Front Panel	Set and hold LASER FIRE switch S4 to ON and measure continuity from connector Jl pin Z to J1 pins W and Y (Fi gure (FO-3).	Measurement indi cates cont i nui ty.	Go to next step.	Faul ty wiring is i ndi cated. Troubl eshoot using RCT schemat i c di agram (Fi gure (FO-3).
7	RCT Cable VR	Measure continuity from Fi gure FO-3): WRP1 to WRP2	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace RCT Cable VD and retest.
8	RCT	Instal\| front Panel per paragraph 3-17a. and return to service.	- •	-••	-•

Table 3-27. MDDE Switch S1 Circuit Fails

Step	Item	Action	I ndi cati on	Yes	No
1	RCT Cable WR	Renove from +24 VDC connect or Jl on RCT.	-••	-••	-••
2	Front Panel	Set MDDE switch S1 to DES and measure continuity from connect or 11 pin Y to pin Z (Figure FO-3).	Measurement indi cates an open circuit.	Go to next step.	Repl ace swi t ch S1 per par agraph 3-17f.
3	Front Panel	Set MDDE switch S1 to DES and measure continuity from connect or $\mid 1$ pin K to pin N (Fi gure FO-3).	Measurement indicates less than 2 ohns.	Go to next step.	Repl aceswi tch S1perparagraph $3-1 / t$.
4	TESTER ON Indi cator Bulb DS2	Unscrew bulb DS2.	-••	-••	-
5	Front Panel	Set MDDE switch S1 to DES and measure continuity from connect or 11 pin K to pin Z (Fiqure FO-3),	Measurement indi cates an open circuit.	```Repl ace ```	Go to next step.
6	Front Panel	Set MODE switch S1 to AZ and measure continuity from Fi gure FO-3):	Measurement indicates \|ess than 2 ohns.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { swi tch S1 } \\ & \text { per } \\ & \text { naragraph } \\ & \text { 3-1/t? } \end{aligned}$
7	Front Panel	Set MDDE switch S1 to RNG and measure continuity from connect or ll pin K to pin Z Fiqure FO-3).	Measurement indi cates an open circuit.	Repl aceswi tch S1perpar agraph $3-17 f$.	Go to next step.
8	TESTER ON I ndi cator Bulb DS2	Screw bulb DS2 into bul bhol der XDS2.	-••	-••	-••
9	Front Panel	Set MODE switch S1 to RNG and measure continuity from connect or \1 pin K to Fiqure FO-3): $\boxed{ } 1$ M	Measurement indi cates an open circuit.	Go to next step.	Repl ace swi tch S1 per paragraph 3-17t.

Table 3-27. MDDE Switch S1 Circuit Fails - Continued

St ep	Item	Action	I ndi cati on	Yes	No
10	RCT Cable UR	Measure continuity from Fi qure FO-3):	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace RCT Cable VR and retest.
11	Front Panel	Check for faulty wi ring using RCT wiring di agram (Fi gure FO-3),	Fault exists.	Repai r faul.	Ret est and go to next step.
12	RCT	Return to service.			

Table 3-28. FIRE CMD Switch S2 Circuit Fails

Step	Item	Action	I ndi cati on	Yes	No
1	RCT Cable VR	Renove from +24 VDC connect or J1 on RCT.	-••	-••	-••
2	RCT	Renove front panel per paragraph 3-179.	-••	-••	-••
3	Front Panel	Set FIRE CMD switch S2 to ON and measure conti nuity from switch S2 pin 2 to switch S2 pin 3 (Fi gure FO-3).	Measurement indi cates I ess than 2 ohns.	Go to next step.	Repl ace switch S2 per paragraph 3-177.
4	Front Panel	Set FIRE CMD switch S2 to OFF and measure conti nuity from switch S2 pin 2 to switch S2 pin 3 (Fi gure FO-3).	Measurement indi cates an open circuit.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { swi tch S2 } \\ & \text { per } \\ & \text { paragraph } \\ & \hline 3-17 \mathrm{~h} . \end{aligned}$
5	Front Panel	Set FI RE CMD switch S2 to $O N$ and measure conti nuity from connect or J1 pin U to (Figure FO-3): $\lfloor 1$ K Z	Measurenent is 6.6 to 7.0 kilohns.	Go to step 7.	Go to next step.
6	Front Panel	Measure continuity from from E3 to E4.	Measurement indi cates 6.8 kilohns.	Faul ty wiring is i ndi cated. Tr oubl eshoot using RCT schematic di agram (Fi aure (FO-3).	$\begin{aligned} & \text { Repl ace } \\ & \text { R3 per } \\ & \text { paragraph } \\ & \hline 3-177 . \end{aligned}$
7	Front Panel	Set FIRE CMD switch S2 to OFF and measure conti nuily from connector Jl pin U to (Fi gure FO-3) $\lfloor 1$ 2 k	Measurement indi cates an open circuit.	Go to next st ep.	Perform step 6.
8	RCT Cable VR	Measure continuity from (Fi gure FO-3): $\begin{array}{ccc}\text { WRP1 } & \text { to } & \text { WRP2 } \\ K & & K \\ Z & & Z \\ U & & U\end{array}$	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace RCT Cable VR and retest.
9	RCT	Instal\| front panel per paragraph 3-17a. and return to service.	-••	$\cdots \cdot$	-••

Table 3-29. RANGE SEL Switch S3 Circuit Fails

Step	Item	Action	I ndi cation	Yes	No
1	RCT Cable WR	Renove from +24 VDC connect or J1 on RCT.	-••	-••	-••
2	RCT	Renove front panel per paragraph 3-17a.	-••	-••	-••
3	Front Panel	Set RANGE SEL switch S3 to RNG 1 and measure continuity from switch S3 pin 1 to switch S3 pin 2.	Measurement indi cates less than 2 ohns.	Go to next step.	Repl ace switch S3 per paragraph $3-17 \mathrm{~h}$.
4	Front Panel	Set RANGE SEL switch S3 to RNG 2 and measure continuity from switch S3 pin 1 to switch S3 pin 2.	Measurement indi cates an open circuit.	Go to next step.	$\begin{aligned} & \text { Repl ace } \\ & \text { swi tch S3 } \\ & \text { per } \\ & \begin{array}{l} \text { paragraph } \\ \hline \text { 3-17h. } \end{array} \end{aligned}$
5	Front Panel	Set RANGE SEL switch S3 to RNG 1 and measure conti nui ty from connect or 11 pin K to 11 pin L (Figure FO-3).	Measurement indi cates less than 2 ohns.	Go to next step.	Faul ty wiring is i ndi cat ed. Troubl eshoot using RCT schematic di agram (Fi gure (F0-3).
6	RCT Cable UR	Measure continuity from (Fi qure FO-3): $\begin{array}{ccc} \frac{\text { WRP1 }}{} & \text { to } & \underline{\text { WRP2 }} \\ K & & K \\ L & & L \end{array}$	Measurement indi cates Iess than 2 ohns.	Go to next step.	Repl ace RCT Cable V 2 and retest.
7	RCT	Install front panel per paragraph 3-17a, and return to service.	-••	-••	-

Table 3-30. RCT Cable WR Fault

3-11. TROBLESHDOII NG PURGE AND FI LL EQU PMENT

Common Purge and Fill Equi pment failures are Iisted in Table 3-31. Fault isol ation procedure is contai ned in Table 3-32.

Table 3-31. Purge and Fill Equi pment Troubl eshooting I ndex

Item	Fail ure Symptom	Troubl eshooting Action
1	Gas Charging Assenbl y leak fault.	Troubl eshoot per Table 3-32.
2	Damaged Purge Val ve Adapter.	Repai r Purge Val ve Adapter per paragraph 3-18b.
3	Danmged Fill Val ve Extension.	Repl ace Fill Val ve Extension.
4	Danaged High Pressure Gage.	Repl ace High Pressure Gage.

Table 3-32. Gas Charging Assenbly Leak

Step	Item	Action	Indi cation	Yes	No

WARNING

Handle compressed gas cylinder carefully. It can explode, become a projectile, injure personnel, and damage equi pment.

Escaping gas may bl ow dirt or dust particles into the eyes.
Rel i eve all pressures bef ore and after use of Gas Charging Assembly and nitrogen source.

NOTE
Fi gure 3-5 bhows location of parts and controls.
Seal threads with Teflon tape when repl acing any item in Gas Charging Assembly.

1	Gas Charging Assenbl y
2	Gas Char gi ng Assenbl y

Table 3-32. Gas Charging Assentbly Leak - Continued

St ep	Item	Action	I ndi cati on	Yes	No
3	Gas Char gi ng Assenbl y	Turn regul at or pressure tee handl e (24) ccw (cl osed) until handle spins freely.	-••	-••	-••
4	Gas Charging Assenbl y	Turn main val ve (18) to closed position.	-	-•	-••
5	Gas Char gi ng Assenbl y	Turn vent val ve (16) cw to closed position.	-••	-••	-••

WARNING

The nitrogen cylinder must be securely fastened to keep it from falling. If the cyl inder should fall 1 , it could break its outl et fittings and becone an unguid ded missill e. Injury or death could result even at a considerable di stance.

6	$\begin{array}{l}\text { Gas Charging } \\ \text { Assenbl y }\end{array}$

Fasten a cylinder of dry nitrogen (GN) to a support in an upright position. Renove protective cap.		
Connect with coupling nut (2) to nitrogen source.		

warning

During application of pressure, be al ert for escaping gas. If assenbl y is faul ty, I eakage from any part of assenbl y could cause blindness, injury, or death. If l eakage occurs, cl ose cyl inder val ve (fully cw) i mediately.

Handl e compressed gas cylinder carefully. It can expl ode, become a projectile, damage equi pment, and injure personnel.

8	Ni trogen Source	Sl owly turn nitrogen source supply val ve fully ccw (open), until inl et or essure gage i ndi cat or stabilizes at cyl inder pressure. Then open cylinder val ve (ccw)	Regul at or input gage indicates supply pressure.	Go to next step.	Perform steps 27 thru 30, place regul at or
9	Gas Charging Assenbly	Turn mai n val ve (18) ccw to open position.			
10	Gas Charging Assenbly y	Turn vent val ve (16) ccw to open position. Check for any gas flow from vent val ve out let.	No noticeable gas flow.	$\left\lvert\, \begin{aligned} & \text { Go to next } \\ & \text { step. } \end{aligned}\right.$	Perform steps 27 thru 30, then repl ace regul at or

Table 3-32. Gas Charging Assentbly Leak - Continued

Step	Item	Action	I ndi cation	Yes	No
11	Gas Charging Assenbly y	Turn vent val ve (16) cw to closed position.	-•	-•	-
12	Gas Charging Assenbly y	Sl owl y turn regul at or pressure tee handle e (24) until charging reli ef val ve (12) begi ns to vent. Observe regulater pressure gage (25).	(a) Gage indicates between 650 and 750 psi g.	Go to next step.	Perf or m steps 27 thru 30, then re- pl ace charging
			(b) Gage indi cates no pressure, leaks or is sticky.	Perform st eps 27 thru 30, then repl ace char ging rel i ef	-••
			(c) Gas flows from vent val ve.	Perform st eps 27 thru 30, then repl ace vent val ve.	-•
13	Gas Charging assentbly	Turn regul at or pressure tee handl e (24) slow y ccw until charging rel i ef val ve (12) stops venting.	Gage indi cates nore than 600 psig .	Go to next step.	Perform st eps 27 thru 30, then repl ace rel i ef val ve.

Table 3-32. Gas Charging Assembly Leak - Continued

Step	Item	Action	Indi cation	Yes	No

NOTE

- Do not allow leak detection compound to enter val ve openi ngs.
- Occasionally a l eak may flow too rapidly to form bubbl es when compound is first applied. Such a leak may only be di scovered by repeated application of compound to suspected areas until bubble activity occurs.
- The actions in the next three steps should be performed at the same time.

Table 3-32. Gas Charging Assentbly Leak - Conti nued

Escaping gas may blow dirt or dust particles into the eyes. Protect eyes and area by di scharging assenbli ies into absor bent mat eri al.

19	Gas Charging Assenbl y	Sl owl y turn vent val ve (16) ccw to open position. Do not proceed to next step until gas flow stops.	Gas flows from vent val ve outlet then stops flowing within approxi matel y 2 minutes.	Go to next step.	Perform steps 27 thru 30, then di sassenbl e gas char gi ng assenthly. Cl ean orifice ni ppl e located bet ween cross and vent val ve.
20	Gas Charging Assentbly	Turn vent val ve (16) cw to closed position. Wait approxi mat el y 5 minutes bef ore proceeding to the next step.	-••	-••	-••

Table 3-32. Gas Charging Assentbly Leak - Conti nued

Step	Item	Action	I ndi cation	Yes	No
21	Gas Charging Assenbl y	Open vent val ve (16) qui ckly turn handle ccw while observing vent val ve out let for gas flow.	No gas flow is det ect ed.	Go to next step.	Perform steps 27 thru 30, then repl ace main val ve.
22	Gas Charging Assentbly	Turn vent val ve (16) ccw to open position.	-••	-••	-••
23	Gas Charging Assenbl y	Turn regul at or pressure tee handl e (24) ccw until it spins freel y.	-••	-••	-

wanming

Escaping gas may blow dirt or dust into the air. Use caution when di scharging pressurized assenbl es.

Gas Charging As sembly

Sl ow y turn mai n val ve (18) ccw. Do not proceed to next step until gas flow stops.

Charging Assenbl y

Gas flows from vent val ve outlet, then stops flowing within 2 minutes.

Go to next step.

Perf orm
steps 27
thru 30,
then dis-
assentble gas charging assenbly. Cl ean pi pe orifice ni pple I ocated bet ween regul at or and filter. Repeat procedure. If
fail ure repeats, repl ace filter.

TM 9-4931-477-14

Table 3-32. Gas Charging Assently leak - Continued

Handle compressed gas cylinder carefully. It can explode, becone a projectile, injure personnel, and danage equi pment. If cylinder is to be moved, install protective cap on cyl inder bef ore unf astening cyl inder from support.

3-12. TROUBLESHOOTING POVER MA NTENANCE CABLE AND EM FI LTER

Common Power Maintenance Cable and EM Filter failures are listed in Table 3-33. Fault isol ation procedures for the Power Maintenance Cable are contai ned in Table 3-34. Fault isol ation procedures for the EM Filter are contained in TM 9-1260-477-34-2.

Table 3-33. Power Maintenance Cable and EM Filter Troubl eshooting Index

Item	Failure Symptom	Troubl eshooting Action
1	Power Mai nt enance Cable fault/ open or shorted wi res. EM Filter faul t/ no out put or filter action.	Troubl eshoot per TM 9-1260-477-34-2.

Table 3-34. Power Mai nt enance Cable Continuity Check

St ep	Item	Action	I ndi cation	Yes	No
1	Power Mai nt enance Cabl e	Check continuity bet ween the fol lowing points (Figure 3-0): P2 Red to P1-A P2 Red to P1-B P2 Black to P1-C P2 Black to P1-D	Measurements indi cate less than 2 ohns.	Go to next step.	Repl ace Power Mai nt enance Cable.
2	Power Mai nt enance Cable	Check continuity bet ween the following points Fi gure 3-0): P2 Red to P1-C P2 Bl ack to P1-A	Measurements indicate an open circuit.	Go to next step.	Repl ace Power Mai nt enance Cable.
3	Power Mai nt enance Cable	Return to service.	-••	-••	-•

MS 544195
Figure 3-0. Power Maintenance Cable Connector P1 Pin Orientation

3-13. TROUBLESHOOTING TEST RESOLVER ASSEMBLY

a. Using multimeter (1, Table 3-2) check resistance in accordance with Table 3-36. Any measurement other than that indicated in Table 3-36indi cates a fault. The ellipsis (...) when used in the procedure indicates an intentional blank or termination of a procedural step.

Table 3-36. Test Resol ver Troubl eshooting

Table 3-36. Test Resol ver Troubl eshooting - Continued

Step	I t em	Action	I ndi cation	Yes	No
5	Test Resol ver	Measure resi stance bet ween foll owing pi ns .	Resi st ance greater than 20 megohns greater than 20 megohns greater than 20 megohns	-••	Send Test resol ver to depot for repai r.

3-14. TROBLESHDOTING BATTERY CHARGR CABLE

a. Using multimeter (1, Table 3-2), check resistance in accordance with Table 3-37. Any measurement ot her than that indicated in Table 3-37 indi cates a fault.
b. Battery charger troubl eshooting procedures are contai ned in

TM 11-6130-392-34.

Table 3-37. Battery Charger Cable Mltimeter Test

Battery Charger Cable		Mul ti meter
From BATTERY Connect or Pin	To CHARGER Connect or Pin	
		NOTE
		BATTERY connector pin P2 is not used.
P1	2	Measurement indi cates less than 2.0 ohns.
P3		Measurement indi cates less than 2.0 ohns.
P1	,	Measurement indi cates an open circuit.
P3	2	Measurement indi cates an open circuit.

3-14.1. TEST AND TROBLESHDOTING IP POVER SUPPLY

Test and troubleshooting procedures for the HP Power Supply are contained in Table 3-38.

Table 3-38. HP Power Supply Test and Troubl eshooting

St ep	Item	Action	I ndi cation	Yes	No
1	HP Power Supply	Turn CURRENT COARSE and FINE controls and VOLTAGE COARSE and FINE controls fully ccw. Turn OVERVOLTAGE ADJ UST fully cw.	-••	-••	

Be sure ac power cable is unpl ugged.
Be sure to connect input ground terminal to an external earth ground.

CAUTION

Do not interchange $A C C / A C$ and $A C / A C$ input I ines.

2	HP Power Supply	Renove rear cover.	-••		-••
3	HP Power Supply	Connect ac power to rear panel by connecting white l ead to ACC/ AC terminal, black lead to AC/AC terminal, and green I ead to ground terminal. Connect ground terminal to an earth ground.	-••	-••	-••
4	HP Power Supply	Install rear cover.	-••	-••	-••
5	AC Power Cable	Plug in to 115 V ac.	-••	-••	-••
6	HP Power Supply	Set \sim LINE switch to ON.	Power indi cator lights.	Go to next step.	Send to cal ibration facility.
7	HP Power Suppl y	Adj ust VOLTAGE COARSE and FI NE controls for +24 V on VOLTS meter.	VOLTS meter indi cates +24 V .	Go to next step.	Send to calibration facility.
8	HP Power Suppl y	Sl ow y turn OVERVOLTAGE AD UST CCw.	OVERVOLTAGE indi cator lights and VOLTS meter indi cation drops to 0 V .	Go to next step.	Send to cal ibration facility.
9	HP Power Supply	Set -LINE switch to OFF and turn OVERVOLTAGE AD UST fully cw.	-••	-••	-
10	HP Power Supply	Set \sim LINE switch to ON.	VOLTS meter indicates +24 V.	Go to next step.	Send to cal ibration facility.

Table 3-38. HP Power Supply Test and Troubl eshooting - Continued

Step	Item	Action	I ndi cation	Yes	No
11	HP Power Supply	Set \sim LINE switch to OFF.	Power I Indi cator goes off.	Go to next step.	Send to cal i bration facility.
12	HP Power Supply	Connect a wi re between rear panel out put terminal (+ t to rear panel output terminal (-).	-••	-••	-••
13	HP Power Supply	Set ~LINE switch to ON and adj ust CURRENT COARSE and FINE controls for 25 A on AMPERES meter.	AMPERES meter indicates 25 A.	Go to next step.	Send to cal ibration facility.
14	HP Power Supply	Set \sim LINE switch to OFF.	-••	-••	-••
15	HP Power Supply	Di sconnect wi re from rear panel out put terminal (+) and rear panel output terminal (-).	-••	-••	-••
16	HP Power Supply	Ret urn to service.	-••	-••	-••

3-14.2. TROBLESHDOTI NG SAFETY INTERLOCK

Ref er to Appendix G.

Section IV. REPA R

3-15. GENERAL

Thi s section contains repai r procedures for the GSE. The tool s, equi pment, and materials requi red to performthese procedures are listed in the appendices. The time required for each repair task is listed in the Maintenance Allocation Chart in Appendix B. Torque val ues not otherwi se specified are given in Appendix F.

3-16. REPA R OF FAULT LOCATOR

WARNING

All power must be renoved from the Fault Locator bef ore start of repl acement procedures. Presence of power during repl acement of components may injure personnel or damage equi prent.

CAUTION

Logic Card A1 is el ectrostatic di scharge sensitive. Protect this card by wearing grounding wristband when probing. Handl ing and/ or installation of indi vi dual cards should be performed at a staticfree work station. This card should be antistatic packaged during handling and storage.
a. Front Panel Removal / Repl acement (Fi gure 3-1).
(1) Set POVER switch S2 to OFF.
(2) Remove 10 screws (1) and flat washers (2).

CAUTION
In following step, lift panel carefully to avoid wi ring danage.
(3) Lift panel (22) out of Fault Locator case.

CAUTION
It is possible to install panel 180° out of position and cause a short between power supply and rel ay K1. Refer to Figure 3-1 for proper orientation of panel.
(4) Lower panel (22) into Fault Locator case.
(5) Install 10 fl at washers (2) and screws (1) (torque 12 to 15 i nch-pounds).

LEGEND

1.	SCREW
2.	FLAT WASHER
3.	SCREW
4.	SCREW
5.	SCREW
6.	SPACER
7.	LOG C CARD A1
8.	FLAT WASHER

9.	NUT
10.	FLAT WASHER
11.	NUT
12.	SCREW
13.	FLAT WASHER
14.	POWER SUPPLY PSI
15.	SCREW

16. HEAT SI NK
17. POVER SUPPLY COVER
18. NUT
19. FLAT WASHER
20. J ACKSCREW
21. HARNESS CONNECTOR P1
22. PANEL

Fi gure 3-1. Fault Locator Component Layout
b. Logic Card A1 Removal / Repl acement (Fi gure 3-1).
(1) Renove front panel (22) per paragraph 3-16す.
(2) Renove six screws (5), spacers (6), flat washers (8), and nuts (9).

CAUTION

Insure that the two screws hol ding P1 to Alj 1 are loosened evenl y by loosening each screw one or two turns at a time to avoid damage to connector.
(3) Loosen two jackscrews (20) and di sconnect harness connector P1 (21).
(4) Renøve four screws (4), flat washers (10), and four nuts (11).
(5) Remove Iogi c card A1 (7).
(6) Install new Iogic card A1.
(7) Install four screws (4), flat washers (10), and four nuts (11) (torque screws 5 to 6 inch-pounds).

CAUTION

Insure screws are tightened evenl y, one turn at a time, to avoid damaging connector.
(8) Connect harness connector P1 (21) and tighten two jackscrews (20) (tor que 5 to 6 inch-pounds).
(9) Install six screws (5), spacers (6), flat washers (8), and nuts (9) (torque screws 6 to 7 inch-pounds).
(10) Install front panel (22) per paragraph 3-16a.
c. Harness Removal / Repl acement Fi gures 3-1 3 -2, and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-160.
(2) Position panel (22, Figure 3-1) so harness (6, Figure 3-2) is accessible.
(3) Tag and unsol der wi res (di amond 15, Fi gure 3-2) from E25 (11). Renove screw (7), flat washer (9), I ockwasher (10), and clamp (8).
(4) Remove four screws (4, Fi gure 3-2), flat washers (3), nuts (1), and clamps (2) from di amonds 16 through 19.
(5) Loosen two jackscrews (5, Fi gure 3-2 on connector P1 (di amond 1) and di sconnect connector P1.

MS 420680F

Figure 3-2. Fault Locator Wre Harness Component Layout
(6) Renove locknut (44, Fi gure FO 2) from connect or J1 (20).
(7) Tag and remove four wi res from S2 by renoving four screws (23, Fi gure FO 2) from switch S2 (24). Tag and renove three wires from connector J2 (25)
(8) Renove two nuts (10, Fi gure FO-2), four flat washers (11), and two wire Iugs (12) (tag wires) from meter ML (7).
(9) Renove two screws (38, Fi gure FO-2) and three wi res (39) (tag wi res) from switch S7 (5).
(10) Tag and di sconnect four terminal I ugs (di amond 9, Fi gure 3-2) from power supply (14, Figure 3-1) terminal posts.
(11) Tag and unsol der all harness wi res from panel components (15, typical, Fi gure FO-2). Remove two terminal I ugs from TP4.
(12) Renove DS1 leads (26, Fi gure FO-2) from harness assenbly.
(13) Renove harness.

NOTE
Refer to Appendix E for wire list.
(14) Install new harness.
(15) Connect three wires (39, Fi gure FO 2) to switch $\mathrm{S7}$ (5); install two screws (38) on S7 (5). Torque 2 to 3 inch-pounds.
(16) Install two nuts (10, Fi gure FO-2), four flat washers (11), and two wire I ugs (12) on meter ML (7). Torque nuts per Appendi x F.
(17) Connect three wi res to connector J2 (25 Fi gure FO 2) and four wires to switch S2 (24); install four screws (23) on switch S2 (24). Torque screws per Appendi x F.
(18) Sol der wi res to panel components Fi gure FO-2). Attach two terminal I ugs to TP4.
(19) Install locknut (44, Figure FO-2) onto connector Jl(20). Torque 80 to 85 i nch-pounds.
(20) Connect connect or P1 (di amond 1, Fi gure 3-2) and tighten two jackscrens (5).
(21) Install four screws (4, Figure 3-2), flat washers (3), nuts (1), and cl amps (2) on di anonds 16 through 19. Tor que 5 to 6 inch-pounds.
(22) Install screw (7), flat washer (9), lockwasher (10), and clamp (8). Torque 5 to 6 inch-pounds. Sol der wi res (di anond 15, Fi gure 3-2) to E25 (11).
(23) Reconnect tagged wires (di amond 9, Fi gure 3-2) to power supply (14, Fi gure 3-1) terminal posts.
(24) Use I acing tape (20, Table D-1 to tie wiring harness bundle.
(25) Install front panel (22) per paragraph 3-16a.
d. Resi stors R1 thru R12 Removal / Repl acement Fi gures 3-1 and FO-2).
(1) Remove front panel (22) per paragraph 3-16a
(2) Locate resistor assentbly on rear of panel Fi gure FO-2).
(3) Tag and unsol der harness lead(s) from terminals and remove resistor(s) from resistor assentbly (detail).
(4) Orient repl acement resistor in proper location on resistor assentbly (see resistor assentbly detail).
(5) Wap leads around terminal leaving space for one additional wire. Reconnect wires tagged in step 3.
(6) Sol der using item (9), Table D-1.
(7) Install front panel (22, Figure 3-1) per paragraph 3-16a.
e. Power Supply, PSI Removal / Repl acement (Fi gure 3-1).
(1) Remove front panel (22) per paragraph 3-16a.
(2) Remove six screws (15) from cover (17) on power supply (14). Remove cover (17) from power supply (14).
(3) Renove four screws (12) and flat washers (13) hol ding power supply (14) to heat sink (16).
(4) Tag and remove wi res from power supply (14) terminal board.
(5) Carefully lift and renove power supply (14) from Fault Locator chassis.
(6) Instal I new power supply (14) on heat sink (16).
(7) Prime and seal threads of four screws (12) and six screws (15) using primer and seal ant itens (26) and (25), Table D-1.
(8) Secure power supply (14) to heat sink (16) using four screws (12) and flat washers (13). Torque screws 9 to 12 inch-pounds.
(9) Reconnect tagged wi res removed in step 4.
(10) Repl ace cover (17) on power supply (14) usi ng six screws (15). Tor que screws per Appendi x F.
(11) Instal I front panel (22) per paragraph 3-16a.
f. TP 1 thru 16 Connect or Removal / Repl acement (Fi gures 3-1] and FO-2).
(1) Renove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate resistor assembly on rear of panel (Fi gure FO-2).
(3) If necessary to access TP connector(s), remove two nuts (40, Fi gure FO-2) and tho washers (41) and move resi stor assently y asi de. Do not strain connecting wires.
(4) Tag and unsol der connecting wire(s) from TP connector(s).
(5) Renove TP connector mounting hardware.
(6) Remove faulty TP connector(s).
(7) Install new TP connector(s). If TP4 (45) is replaced, install two ground I ugs.
(8) Secure TP connector(s) to panel using mounting hardware. Tor que per Appendi x F.
(9) Connect and sol der wi re(s) removed in step 4.
(10) If resistor assentbly was removed in step 3, install resistor assenbly on nounting posts (42).
(11) Secure resistor assenbly with two nuts (40, Fi gure FO-2) and two washers (41).
(12) Install front panel (22, Fi gure 3-1) per paragraph 3-16چ.
g. K1 Rel ay Removal / Repl acement (Fi gures 3-1 and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16a
(2) Tag and unsol der wi res from K1 rel ay (43, Fi gure FO-2).
(3) Renove three screws (17), flat washers (18) and nuts (19), and renove K1 rel ay fromits mounting bracket.
(4) Install new K1 relay (43) on its mounting bracket.
(5) Secure K1 rel ay by tightening three screws (17), flat washers (18) and nuts (19). Torque screws 6 to 7 inch-pounds.
(6) Reconnect tagged wires removed in step 2. Connect shorting wi re between K1-C1 and K1- X2.
(7) Sol der using item (9), Table D-1.
(8) Install front panel (22, Fi gure 3-1) per paragraph 3-16a.
h. F1/ XF1 Renoval / Repl acement (Fi gures 3-1] and FO-2).
(1) Remove fuse and di scard if unservi ceable.
(2) Remove front panel (22, Fi gure 3-1) per paragraph 3-160.
(3) Locate fusehol der XF1 (47, Fi qure FO-2) on rear of panel.
(4) Tag and unsol der two connecting wires.
(5) Renove XF1 (47) and nounting hardware.
(6) Install new fusehol der XF1 (47).
(7) Secure XF1 (47) to front panel (22, Fi gure 3-1) with mounting hardware. Tor que per Appendi x F. St ake threads using enamel, item (21), Table D-1.
(8) Reconnect tagged wires removed in step 4.
(9) Sol der using item (9), Table D-1.
(10) Install front panel (22, Figure 3-1) per paragraph 3-160.
(11) I nsert fuse into fusehol der XF1 (47, Fi gure FO- 2).
i. Switch S2 Removal/Repl acement (Fi gures 3-1 and FO-2.)
(1) Renove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate switch S2 (24, Fi gure FO-2) on rear of front panel.
(3) Tag and remove attaching wi res.
(4) Renove mounting har dware and free $S 2$ (24, Fi gure FO-2) from panel.
(5) Di scard I ockwasher supplied with new switch S2. Install new switch S2 (24).
(6) Secure S2 (24) to panel using mounting hardware. Tor que per Appendi XF . Stake threads using enamel, item (21), Table D-1.
(7) Reconnect tagged wires removed in step 3.
(8) Install front panel (22, Fi gure 3-1) per paragraph 3-16a.
j. Switch S7 Removal / Repl acement Fi gures 3-1 and FO- 2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate switch S7 (5, Figure FO-2) on rear of panel.
(3) Tag and remove attaching wi res.
(4) Remove switch S7 (5) mounting hardware.
(5) Free switch S7 (5) from panel.
(6) Discard terminal I ug (4) supplied with new switch. Install new switch S7 (5).
(7) Secure S7 (5) to panel with mounting hardware. Torque per Appendix F.
(8) Reconnect wi res removed in step 3.
(9) Install front panel (22, Fi gure 3-1) paragraph 3-160.
k. Switch S5 Removal / Repl acement (Fi gures 3-1] and $/$ FO-2).
(1) Loosen two setscrews in knob (35) of switch $S 5$ (15, Fi gure FO-2).
(2) Renove front panel (22, Figure 3-1) per paragraph 3-160.
(3) Locate switch S5 (15, Fi gure FO-2) on rear of panel.
(4) Tag and unsol der harness leads fromswitch terminals.
(5) Renove mounting har dware from S5 (15).
(6) Free switch S5 (15) from panel.
(7) Install repl acement switch S5 (15).
(8) Secure S 5 (15) to panel with manuf acturer supplied mounting hardware. Tor que per Appendi x F. St ake threads using enamel, item (21), Table D-1.
(9) Reconnect tagged wi res removed in step 4. Connect shorting wires bet ween S5 (15) terminals per Table E-1.
(10) Sol der using item (9), Table D-1.
(11) Install front panel (22, Fi gure 3-1) per paragraph 3-163.
(12) Secure switch knob (35, Fi gure FO-2) to switch S5 (12) ti ghteni ng two set screws.
(13) Rotate switch knob (35) fully left. Pointer must be at BAT VDC. If not reposition knob to locate pointer at BAT VDC.

1. Connect or 12 Renoval / Repl acement (Fi gures 3-1 and FO- 2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate connector J 2 (25 , Fi gure FO-2) on rear of panel.
(3) Tag and remove attachi ng wi res.
(4) Renove two screws (46), flat washers (36) and Iocking nuts (37).
(5) Free connector J2 (25) from panel.
(6) Install new connector J2 (25).
(7) Secure connector J2 (25) to panel using two screws (46), flat washers (36) and locking nuts (37). Torque screws 6 to 7 inch-pounds.
(8) Reconnect tagged wi res removed in step 3.
(9) Install front panel (22, Figure 3-1) per paragraph 3-16].
m Connect or J1 Removal / Repl acement (Fi qures 3-1 and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate connect or Jl(20, Fi gure FO-2) on rear of panel.
(3) Tag and unsol der attaching wires.
(4) Loosen locknut (44) and free connector J1 (20) from panel (Figure FO-2).
(5) Install new connector J1 (20).
(6) Secure connector J1 (20) to panel using locknut (44). Tor que locknut (44) 80 to 85 inch-pounds. Stake threads using enamel, item (21), Table D-1.
(7) Reconnect tagged wi res removed in step 3.
(8) Sol der using item (9), Table D-1.
(9) Install front panel (22, Figure 3-1) per paragraph 3-16a.
n. Switch S1, S6, S8, S9 Renoval / Repl acement (Fi qures 3-1] and FO-2).
(1) Renove front panel (22, Figure 3-1) per paragraph 3-16a.
(2) Locate switch(es) to be replaced S1, S6, S8, S9 on rear of panel (Fi gure FO-2).
(3) Tag and unsol der attaching wires.
(4) Remove mounting hardware and free switch(es) S1, S6, S8, S9 from panel.
(5) Install replacement switch(es) $\mathrm{S} 1, \mathrm{~S}, \mathrm{~S} 8, \mathrm{~S} 9$.
(6) Secure switch(es) $\mathrm{S} 1, \mathrm{~S} 6, \mathrm{~S} 8, \mathrm{~S} 9$ to panel with manufacturer supplied nounting hardware. Torque per Appendi x F.
(7) Reconnect tagged wi res renøved in step 3. If S1 is repl aced, connect shorting wi re bet ween S1-1NC and S1-2NC.
(8) Sol der using item(9), Table D-1.
(9) Install front panel (22, Figure 3-1) per paragraph 3-160.
2. Meter ML Removal / Repl acement Fi gures 3-1 and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-160.
(2) Locate meter MI (7, Fi gure FO-2) on rear of panel.
(3) Tag and remove two attaching wire I ugs (12) by removing two nuts (10) and four fl at washers (11).
(4) Free meter MI (7) from panel by renoving three screws (31), flat washers (32), lockwashers (33), and nuts (34).
(5) Install new meter MI (7).
(6) Secure ML (7) to panel using three screws (31), flat washers (32), I ockwashers (33), and nut (34). Tor que per Appendix F. Stake threads using enarrel, item (21), Table D-1.
(7) Reconnect two attaching wire I ugs (12), two nuts (10) and four flat washers (11) removed in step 3.
(8) Install front panel (22, Fi gure 3-1) pe paragraph 3-16ă.
p. Indi cat or Li ght DS1 Removal / Repl acement \quad Fi gures 3-1 and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16ä.
(2) Locate DS1 (26, Fi gure FO 2) on rear of panel.
(3) Unsol der two DS1 attaching wi res from connections at E25 and S9-1NO (see W'ring List, Appendi x E).
(4) Free DS1 (26) from panel by removi ng attaching hardware.
(5) Install repl acement DS1 (26).
(6) Secure DS1 (26) to front panel using attaching hardware. Tor que per Appendi x F.
(7) Connect two DS1 (26) attaching wires to proper connection points E25 and S9-1NO (see W'ring List, Appendi x E).
(8) Sol der using item (9), Table D-1.
(9) Install front panel (22, Fi gure 3-1) per paragraph 3-16a.
q. Display Insulator, Support Plate and Filter Window Removal / Repl acement [Figures 3-1 1 and \mid FO-2).
(1) Renove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Remove Iogic card A1 (9, Figure FO-2) per paragraph 3-16h.
(3) Renove display insul ator, support plate and filter window (28, 29, 30, Fi gure FO-2) by renoving four screws (3, Fi gure 3-1), washers (19), and nuts (18).
(4) Install filter window, support plate, and display insulator and secure with four screws (3), washers (19), and nuts (18). Tor que $5-6$ inchpounds.
(5) Install Iogic card A1 per paragraph 3-16b.
(6) Install front panel (22, Fi gure 3-1) per paragraph 3-16a.
r. Di ode CR1 Removal / Repl acement (Fi gures 3-1 and FO-2).
(1) Remove front panel (22, Fi gure 3-1) per paragraph 3-16a.
(2) Locate di ode CR1 (16, Fi gure FO- 2) on K1 rel ay (43 , Fi gure FO-2).
(3) Tag and unsol der di ode leads.
(4) Orient repl acement di ode in proper Iocation on K1 relay. Connect cathode end to pin X1 and anode end to pin X2.
(5) Sol der using item (9), Table D-1.
(6) Install front panel (22, Fi gure 3-1) per paragraph 3-16a.

3-17. REPAR OF REMOTE CAPABILITIES TESTER COMPONENTS

WARNING
All power must be removed from the Remote Capabilities Tester before starting repl acement procedures. Presence of power during repl acement of components may injure personnel or may damage equi pment.

Bef ore removing any component, inspect all wires and sol dered connections for signs of breakage or damage. The Remote Capabilities Tester schematic diagram (Figure (FO-3) may be used to identify wiring faults.
a. Panel Removal / Repl acement (Fi gure 3-3).
(1) Remove four screws (1) and flat washers (2).

Cavion

In the following two steps, lift and lower panel carefully to avoi d wi ring damage.
(2) Lift panel (3) out of RCT case.
(3) Lower panel (3) i nt o RCT case.
(4) I nstall four screws (1) and flat washers (2) (torque screws 6 to 7 i nchpounds).

Figure 3-3. Remote Capabilities Tester Panel Removal
b. Resi stors R1 (or R3) Renoval / Repl acement (Fi gure 3-4).
(1) Remove front panel per paragraph 3-17ă.
(2) Locate resistor (13 or 3) on rear of panel.
(3) Tag connecting wires.
(4) Unsol der connecting wi res and resistor (13 or 3).
(5) Inspect terminal s and if repl acement is requi red remove terminal retaining screws (17) and flat washers fromfront of panel and remove terminal lugs and Iockwashers from back of panel.
(6) Install new terminal Iugs and Iock washers and secure with retai ning screws (17) and flat washers (torque screws 5 to 6 inch-pounds).
(7) Li ne up repl acement resistor on rear of panel.
(8) Wap resistor leads around terminals and reconnect wires removed in step 4.
(9) Sol der resistor leads and wires using item (9), Table D-1.
(10) Install front panel per paragraph 3-17a.
c. Connect or $/ 1$ Renoval / Repl acement (Fi gure 3-4).
(1) Renove front panel per paragraph 3-17a.
(2) Locate connector J1 (1) on rear of panel.
(3) Tag connecting wires.
(4) Extract pin(s) as needed.
(5) To repl ace faulty pins, cut the wire and renove the faulty pin. Secure new pin to tagged wire.
(6) Renove retai ning nut (18) from front of panel and free connector J1 from rear of panel.
(7) Install pins into connector J1 (1).
(8) Li ne up and install connector J1 into panel.
(9) Prime and seal connector threads using primer and seal ant itens (26) and (25), Tabl e D-1.
(10) Secure connector J1 (1) to panel using retaining nut (18).
(11) Install front panel per paragraph 3-17a.

LEGEND:

1. RCT CABLE CONNECTOR J1
2. TESTER ON INDICATOR XDS2
3. RESISTOR R3
4. CMPTR WORD TEST POINT (TP1)
5. RTN TEST POINT (TP3)
6. CMPTR WORD TEST POINT (TP2)
7. CODE SELECT SWITCHES A, B, C
8. MODE SWITCH SI
9. LASER FIRE SWITCH GUARD
10. LASER FIRE SWITCH S4
11. LASER ARMED INDICATOR XDS 1
12. RANGE SEL SWITCH S3
13. RESISTOR RI
14. RETICLE BRIGHTNESS CONTROL R2
15. FIRE CMD SWITCH S2
16. RESISTOR R2
17. SCREW
18. NUT

Figure 3-4. Renote Capabilities Tester Component Layout
d. TP 1, 2, 3 Terminal Removal / Repl acement (Fi gure 3-4).
(1) Remove front panel per paragraph 3-17a
(2) Locate TP terminals (4), (5), and (6) on rear of panel.
(3) Tag and unsol der connecting wire from TP terminal.
(4) Renove TP terminal nut and star lockwasher fromfront of panel.
(5) Remove TP terminal fromrear of panel.
(6) Install new TP terminal from rear of panel.
(7) Install and tighten retaining nut and star lockwasher fromfront of panel.
(8) Connect wi res removed in step 3 and sol der using item (9), Table D-1.
(9) Install front panel per paragraph 3-179.
e. Code Sel ect Switches S5, S6, S7 Renoval/Repl acement (Fi qure 3-4).
(1) Remove front panel per paragraph 3-17a.
(2) Loosen two setscrews on side of code switch knob. Lift knob to renove from code switch (7).
(3) Locate code switch (7) on rear of panel.
(4) Tag and unsol der four wi res from code switch (7).
(5) Remove code switch retaining nut and star lockwasher fromfront of panel.
(6) Renove code switch (7) from rear of panel.
(7) Install new code switch (7) with pins 2 and 4 towards top of rear of panel and pins 1 and 3 towards bottom of rear of panel.

NOTE
Insure the O-ring is properly seated in the base of the code switch. If O-ring is repl aced, I ubricate new O-ring using item (22), Table D-1.
(8) Install star lockwasher and retai ning nut on front of panel and tighten.
(9) Connect wires removed in step 4 and sol der using item (9), Table D-1.
(10) SI ide code switch knob onto shaft of code switch and tighten setscrews.
(11) Turn code switch (7) fully count erclockwi se (ccw).
(12) Loosen setscrews then Iine knob number " 1 " up with the white dot and retighten setscrews.
(13) Install front panel per paragraph 3-17a.
f. MDDE Switch S1 Renoval / Repl acenent Fi gure 3-4).
(1) Remove front panel per paragraph 3-172.
(2) Loosen two setscrews on side of switch knob and renove knob.
(3) Locate switch S1 (8) on rear of panel.
(4) Tag and unsol der connecting wires.
(5) Renove switch retaining nut and star lockwasher from front of panel.
(6) Renove switch S1 (8) from rear of panel.
(7) Li ne up and install new switch S1 (8) from rear of panel.
(8) Install star lockwasher and retaining nut on front of panel (torque nut 16 to 20 inch-pounds).
(9) Connect wi res removed in step 4 and sol der using item (9), Table D-1.
(10) Place switch knob onto switch shaft and tighten two setscrews.
(11) Turn switch S1 (8) fully count erclockwi se (ccw), then Ioosen setscrews and line up white dot on switch knob with DES.
(12) Ti ghten setscrews (torque 5 to 6 inch-pounds).
(13) Install front panel per paragraph 3-17a.

g. LASER FIRE Switch Guard Removal/Repl acement (Fi gure 3-4).

(1) Remove front panel per paragraph 3-17a.
(2) Hold nut on back of panel while removing screw on switch guard (9).
(3) Renove switch S4 retaining nut and star lockwasher fromfront of panel.
(4) Lift off switch guard.
(5) Position new switch guard.
(6) Install retai ning screw and switch S4 retaining star Iockwasher and nut (torque screw 6 to 7 inch-pounds, torque nut 24 to 26 inch-pounds).
(7) Install front panel per paragraph 3-17a.
h. FIRE CMD Switch S2, RANGE SEL Switch S3, or LASER FIRE Switch S4 Renoval/ Repl acement (Fi gure 3-4).
(1) Remove front panel per paragraph 3-17a
(2) Locate switch (15,12 , or 10) on rear of panel.
(3) Tag connecting wires and unscrew retaining screws from contacts.
(4) Remove retai ni ng screms, washers, and terminal Iugs.
(5) Remove retai ning nut and star lockwasher fromfront of panel.
(6) Remove switch (15, 12, or 10), keying washer, and nut from rear of panel.
(7) Install new switch (15, 12, or 10), keying washer and nut in rear of panel. Position tab on switch keying washer with notch in rear of panel.
(8) Install star lockwasher and retai ning nut on front of panel (torque nut 24 to 26 inch-pounds).
(9) Position wires on switch contacts removed in step 3.
(10) Secure terminal I ugs by installing retaining screws and washers.
(11) Install f rent panel per paragraph 3-17a.
i. LASER ARMED I ndi cat or Hol der XDS1 or TESTER ON I ndi cator Hol der XDS2 Removal / Repl acement (Figure 3-4)].
(1) Renove I ens and bul b.
(2) Remove front panel per paragraph 3-17a
(3) Locate indi cator hol der (11 or 2) on rear of panel.
(4) Tag and unsol der connecting wi res.
(5) Remove retai ni ng nut and star lockwasher from rear of panel.
(6) Renove indi cator hol der (11 or 2) from front of panel.
(7) Install new indicator hol der (11 or 2) fromfront of panel.
(8) Install and tighten retaining nut and star lockwasher from rear of panel.
(9) Connect wires removed in step 4 and sol der using item (9), Table D-1.
(10) Instal I front panel per paragraph 3-17a.
(11) Install bulb and Iens.

j. RETI CLE BRI GHTNESS Control R2 Removal / Repl acement (Fi gure 3-4).

(1) Loosen two setscrews on si de of knob.
(2) Lift knob off shaft of control (14).
(3) Remove front panel per paragraph 3-17a
(4) Locate R2 (14) on rear of panel.
(5) Tag and unsol der connecting wires.
(6) Renove retaining nut and star lockwasher fromfront of panel.
(7) Remove R2 (14) from rear of panel.
(8) Install new R2 (14) from rear of panel and position R2 keying tab in notch on rear of panel.
(9) Install and tighten retai ni ng nut and washer from front of panel.
(10) Connect wi res removed in step 5 and sol der using item(9), Table D-1.
(11) Place knob onto control shaft (torque knob setscrews 12 to 15 inchpounds).
(12) Install front panel per paragraph 3-17a.
k. Laser Warning Plate Removal / Repl acement.
(1) Renove decal fromfront of panel by scraping with a knife.
(2) Cl ean the front panel surface using sol vent and wi ping rags (itens 5 and 6, Table D-1) prior to placing the new decal in position.
(3) Position and attach the new decal to the front panel.

3-18. REPA R OF PURGE AND FILL EQU PMENT

a. Gas Charging Assentbly Repair (Fi gure 3-5).
(1) Locate part to be removed as shown in Fi gure 3-5.

note

Al ways minimize number of di sconnects in order to reduce wear and to maintain integrity of pressure seal s.
(2) Di sconnect attached itens frompart being removed.
(3) Seal all male threads with Teflon tape (30, Table D-I).
(4) Install each part and torque 35 to 70 inch-pounds while mai ntaining al i gnment of controls.
b. Purge Val ve Adapter Repai r (Fi gure 3-5).
(1) Remove pressure reli ef val ve (7) and preformed packing (10).
(2) Remove preformed packing (9) frompurge val ve adapter (8).
(3) Insert preformed packing (9) into purge val ve adapter (8).
(4) Insert preformed packing (10) and install pressure relief val ve (7).
c. Fill Val ve Extensi on Repair (Figure 3-5).

Fill val ve extension (4) is a non-repairable item Repl ace if damaged.
d. High Pressure Gage Repair (Figure 3-5).

Hi gh Pressure Gage (27) is a non-repai rable item Repl ace if danaged.

3-19. REPAI R OF EM FILTER

Ref er to TM 9-1260-477-34-2.

LEGEND

1. REGULATOR
2. COUPLING NUT
3. REGu!ATOR RELIEF VALVE
4. FILL VALVE EXTENSION
5. CONNECTION VALVE
6. PURGING ADAPTER ASSEMBLY
7. PRESSURE RELIEF VALVE
8. Purge valve adapter
9. PREFORMED PACKING
10. PREFORMED PACKING
11. HOSE
12. Charging relief valve
13. PIPE CROSS
14. FLARED TUBE NIPPLE
15. PIPE ORIFICE NIPPLE
16. VENT VALVE
17. PIPE NIPPLE
18. MAIN VALVE
19. PIPE NIPPLE
20. FILTER
21. PIPE ORIFICE NIPPLE
22. REDUCER BUSHING
23. 90° PIPE ELBOW
24. REGULATOR PRESSURE

TEE HANDLE
25. REGULATOR PRESSURE GAGE
28. INPUT PRESSURE GAGE
27. HIGH PRESSURE GAGE

Figure 3-5. Purge and Fill Equi pment Component Layout
3-20. REPA R OF PONER MA NTENANCE CABLE
Power Maintenance Cable is a non-repai rable item Repl ace if damaged.
3-21. REPA R OF RCT CABLE UR
RCT Cable VZ is a non-repai rable item Repl ace if damaged.
3-22. REPA R OF TEST RESQVER
If Test Resolver requires repai r, send it to depot.
3-23. REPA R OF BATTERY CHARGER CABLE
Battery Charger Cable is a non-repai rable item Repl ace if damaged.
3-24. REPA R OF HP POVER SUPPLY
If HP Power Supply requires repair, send it to calibration facility.
3-25. REPA R OF SAFETY INTERLOCK
Ref er to Appendix G.

APPEND X A REFERENCES

Ref er to TM 9-1260-477-L for publications applicable to the G/VLLD System

APPENDIX B

B-1. GINERAL

Thi s appendi x contains the maintenance allocation chart (Table B-1) which indicates the lowest level of maintenance authorized to perform particular maintenance oper ations.

B- 2. MA NTENANCE FUNCTI ONS

Maintenance functions shall be limited to and defined as follows:
a. Adjust. Maintain within prescribed limits by bringing into proper or exact position, or by setting the operating characteristics to the specified par ameters.
b. Align. To adjust specified variable el ement of an itemto bring about optimum or desired performance.
c. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test, measuring, and di agnostic equi pment used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any di screpancy in the accuracy of the instrument being compared.
d. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/ or el ectrical characteristics with established standards through examination.
e. Install. The act of empl acing, seating, or fixing into position an item $\overline{\text { part, module (component or assentbly) in a manner to allow the proper }}$ functioning of the equi prent/system
f. Overhaul. That maintenance effort (service/ action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards in pertinent technical publications. Overhaul is normally the hi ghest degree of mai nt enance performed by the Army. Overhaul does not normally return an item to like-new condition.
g. Rebuild. Consists of those services/actions necessary for the restoration of unservi ceable equi pment to a like-new condition in accordance with original manufacturing standards. Rebuild is the hi ghest degree of material mai ntenance applied to Army equi pment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in cl assifying Army equi pment/components.
h. Repair. The application of maintenance services (inspect, test, service, adjust, al ign, calibrate, repl ace) or ot her mai ntenance actions (wel di ng, gri nding, riveting, strai ght ening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, mal function, or failure in a part, subassenbly, module/component/assenbly, end item or system
i. Repl ace. The act of substituting a serviceable like-type part, subassentbly, module component or assenbly) in a manner to allow the proper functioning of an equi pment/system
j. Service. Operations required periodically to keep an itemin proper operating condition, i.e., to clean, preserve, drai n, paint, or to repl eni sh fuel/lubricants/hydraulic fluids or compressed air supplied.
k. Test. To verify serviceability and to detect inci pient failure by measuring the mechanical or el ectrical characteristics with prescribed standards.
I. Symbol s. The uppercase letter placed in the appropriate col umm indicates the lowest level at which that particular maintenance function is to be performed.

B-3. EXPLANATI ON OF FORNAT

Purpose and use of the format are as follows:
a. Col um 1. Group Number. Col um 1 lists group numbers, the purpose of which is to match components, assenblies, subassemblies and modul es with the next hi gher assentbl y.
b. Col um 2. Functional Group. Col um 2 lists the next hi gher assently group and the item names of components, assemblies, subassentol ies and modul es within the group for which mai ntenance is authorized.
c. Col um 3. Maintenance Function. Col umm 3 lists the el even mai nt enance functions defined in B- 2above. Each mai nt enance function requir red for an item shall be specified in this col um.
d. Col umm 4. Mai ntenance Category. Col um 4 indicates the I evel responsi ble for the required maintenance. The foll owing symbols shall be used:

C - Oper at or/Crew
O- Organizational
F - Direct Support
H - General Support
D - Depot
Under each symbol there shall be listed an approprite work measurement time val ue determined as indi cated in e bel ow.
e. Wbrk Measurement Time. The active repair time required to perform the maintenance function is included di rectly bel ow the symbol identifying the category of maintenance. The manpower figures are devel oped under conditions (real or simulated) corresponding to those that are considered normal for G/VLLD units operating in the field. The skill level s used to obtain the neasurement times are approxi mate to those found in typi cal G/VLLD units. Active repair time is the average aggregate time required to restore an item (subassentbly, assembly, component, module, end item or system) to a servi ceable condition under typical field operating conditions. This time includes preparation time, fault isolation diagnostic time, and QAM QC time in addition to the time required to performspecific maintenance functions identified for the tasks authorized in the mai ntenance allocation chart. This time is expressed in man-hours and carried to one decimal place (tenths of hours). An " X " means indeterminate time allotment for checking out mai ntenance function.
f. Col um 5, Tools and Equi pment. This col um is used to specify, by code, those tools and test equi pment required to perform the designated function.

Table B-1. Mai ntenance All ocation Chart
(1)
(2)
(3)
(4)
(5)

Table B-1. Mai ntenance Allocation Chart - Continued

(1)	(2)	(3)			4)			(5)
$\begin{aligned} & \text { GROUP } \\ & \text { NUMBER } \end{aligned}$	COMPONENT/ASSEMBLY	MAINTENANCE FUNCTION	MAINTENANCE CATEGORY*					TOOLS AND EQUIPMENT
			C	0	F	H	D	
$\begin{aligned} & 0010 \\ & \text { (cont) } \end{aligned}$								
	$\begin{aligned} & \text { Switches, Rotary, } \\ & \text { S1, S5, S6, S7 } \end{aligned}$	Inspect Replace			\dot{x}^{1}			1, 2
	Guard, Toggle Switch	Inspect Replace			\dot{x}^{1}			2
	Resistors, R1, R3	Inspect Replace			\dot{x}^{1}			1, 2
	Plate, Laser Warning	Inspect Replace			\dot{x}^{1}			2
	Switch, Toggle, S4	Inspect Replace			\dot{x}^{1}			1, 2
	Panel	Inspect Replace			\dot{X}^{1}			2
	Knobs	Inspect Replace			\dot{x}^{1}			2
	Cable Assembly	Inspect Replace Repair			X X		X	
0100	FAULT LOCATOR	Inspect Test Service Replace Repair						1, 2, ${ }^{3}$,
-	Plate, Identification	Inspect Replace			. 1		X	
-•	Cable Assembly, Test	Inspect Test Replace			\dot{x}^{1}			
-••	Cable Assembly, Power	Inspect Test Replace			¢ X^{1} .3			1, 2

Table B-1. Mai ntenance Allocation Chart - Continued
(1)
(2)
(3)
(4)
(5)

Table B-1. Mai ntenance Allocation Chart - Continued
(1)

GROUP NUMBER	COMPONENT/ ASSEMBLY	MAI NTENANCE FUNCTI ON	MAI NTENANCE CATEGORY*					TOOLS AND EQUI PMENT
			C	0	F	H	D	
$\begin{aligned} & 0200 \\ & \text { (Cont) } \end{aligned}$								
	Meter, ML	I nspect Repl ace			. 1			2
	Fusehol der	I nspect Repl ace			\dot{x}^{1}			2
	I ndi cat or, Li ght, DS1	I nspect Repl ace			\dot{x}^{1}			2
	I nsul at or, Di spl ay	I nspect Repl ace			\dot{x}^{1}			2
	Pl ate, Support	I nspect Repl ace			\dot{x}^{1}			2
	W W dow, Filter	I nspect Repl ace			\dot{x}^{1}			2
	Di ode, CR1	I nspect Repl ace			\dot{x}^{1}			2
0300	Cl RCUI T CARD ASSEMBLY, LOG C	I ns pect Test Adj ust Repl ace Repai r			.1 .3		X X x	2
3300	EM FILTER ASSEMBLY	I nspect Test Service Repl ace Repai r		.1 .1 .1	x X			1, 2
-••	CHARG NG ASSEMBLY, GAS - G/VLLD	I nspect Repl ace Repai r			$\begin{aligned} & .2 \\ & 1 \\ & 1.0 \end{aligned}$			2
-•	CABLE, POWER MAI NTENANCE	I nspect Repl ace			$\begin{aligned} & .1 \\ & .1 \end{aligned}$			1, 2

Table B-1. Mai ntenance All ocation Chart - Continued
(1)

GROUP NUMBER	COMPONENT/ ASSEMBLY
3300 (cont)	
- .	CABLE ASSEMBLY, CHARGER, BATTERY
$\cdots \cdot$ •	TEST RESOLVER ASSEMBLY
.	ADAPTER ASSEMBLY, PURG NG
- .	EXTENSI ON, FI LL VALVE

[^0]Table B-2. Tool s and Test Equi pment Requi rements

$\begin{aligned} & \text { TOO } \\ & \text { CODE } \end{aligned}$	MAI NTENANCE CATEGORY	NOMENCLATURE	NATI ONAL STOCK NUMBER
1	F	Mul ti met er, AN/ PSM- 6B	6625-00-957-4374
2	F	Laser System Fi eld Maintenance Tool Kit	5180-01-048-8570
3	F	Oscilloscope, Tektronix, Mbdel 7633	6625-01-093-2261
4	F	Plug-in, Dual Trace Amplifier 7A26	6625-00-361-5318
5	F	Pl ug-i n , Uni versal Counter / Ti mer	6625-00-392-2604
6	F	Oscilloscope, Tektronix, Mbdel 2430A	6625-01-258-0022
7	F	Digital El ectronic Counter, Racal Dana, Mbdel 1992	6625-01-271-3012

APPENDIX C
 COMPONENTS OF END I TEM AND BASIC ISSUE ITEMS LISTS

Section II. I NTRODUCTI ON

C. 1. SCOPE

This appendix lists components of end item and basic issue itens for the GSE to hel p you inventory itens required for safe and efficient operation.

C-2. GENERAL

The Components of End Item and Basic Issue Itens Lists are divided into the following sections:
a. Section II. Components of End Item This listing is for informational purposes only, and is not authority to requestion replacements. These itens are part of the end item but are removed and separately packaged for transportation or shi pment. As part of the end item these items must be with the end item whenever it is issued or transferred between property accounts. Illustrations are furni shed to assist you in identifying the itens.
b. Section III. Basic Issue Itens. These are the minimessential itens required to place the GSE in operation, to operate it, and to perform emergency repairs. Although shipped separately packaged, Basic Issue Itens (BII) mist be with the GSE during operation and whenever it is transferred between property accounts. The illustrations will assist you with hard-to-identify itens. Thi s manual is your authority to request/requi sition repl acement BII, based on TOE/MTOE authorization of the end item

C-3. EXPLANATI ON OF COLUMS

The following provides an explanation of colums found in the tabular listings:
a. Col um (1) - III ustrati on Number (Item Fi g. No). I ndi cates the item and figure number of the illustration in which the item is shown.
b. Col um (2) - National Stock Number. I ndi cates the national stock number assigned to the item and will be used for requi sitioning purposes.
c. Col um (3) - Description. I ndicates the Federal item name and, if required, a minimum description to identify and locate the item The last line for each item indi cates the CAGEC (in parentheses) followed by the part number.
d. Col um (4) - Unit of Measure (U / M. . Indi cates the measure used in performing the actual operational/mintenance function. This measure is expressed by a twocharacter al phabetical abbreviation (e.g., ea, in, pr).
e. Col um (5) - Quantity Required (Oty Rar). Indicates the quantity of the item authorized to be used with/on the equi prent.

Section II. COMPONENTS OF END ITEM
Table C-1. Components of End Item List

$\begin{aligned} & \text { I II us } \\ & \text { I tem } \end{aligned}$	(1) tration Fi g. No.	(2) Nati onal Stock Nunber	(3) Description CAGEC and Part Number	(4) U/ M	$\begin{aligned} & \text { (5) } \\ & \text { Qty } \\ & \text { Rqr } \end{aligned}$
9	C-1	1420-01-072-1020	Battery Charger Cable (18876) 13034390	ea	1
5	C-1	1260-01-073-5879	EM Filter (18876) 11559640	ea	1
1	C-1	4931-01-046-2835	Fault Locator (18876) 11507815	ea	1
10	C-1	4931-01-057-2206	Fill Val ve Extension (18876) 11507849	ea	1
12	C-1	4931-01-107-6889	Gas Charging Assentbly (18876) 11507817	ea	1
2	C-1	6130-01-004-8974	Hew ett - Packard Power Supply (28480) 6268BO1O-026	ea	1
13	C-1	4931-01-242-6260	High Pressure Gage (18876) 13012630	ea	1
6	C-1	4931-01-075-6380	Power Mai nt enance Cable (18876) 13033955	ea	1
11	C-1	4931-01-056-7976	Purge Val ve Adapter (18876) 11507835	ea	1
3	C-1	5995-01-122-5709	$\begin{aligned} & \text { RCT Cabl e VR } \\ & (18876) \quad 11559506 \end{aligned}$	ea	1
7	C-1	4931-01-142-1289	Remote Capabilities Tester (18876) 11559500	ea	1
8	C-1	4931-01-279-6441	Saf et y Interlock (18876) 13250989	kt	1
4	C-1	4931-01-075-6310	Test Resol ver (18876) 11508483	ea	1

C- 2 Change 2

Fi gure C-1. Components of End Item (Sheet 1 of 2)

Fi gure C-1. Components of End Item (Sheet 2 of 2)

Section III. BASIC ISSLE ITEMS
Table C-2. Basic Issue Itens List

(1) III ustration		(2) Nat i onal St ock Nunber	(3) Description CAGEC and Part Number	(4) U/M	$\begin{aligned} & \text { (5) } \\ & \text { Qty } \\ & \text { Rqr } \end{aligned}$
Item	Fi g. No.				
	\ldots	NSNL	TM 9- 4931-477-14 (none) none	ea	1

APPEND X D
EXPENDABLE/ DURABLE SUPPLIES AND MATER ALS LIST

Secti on I. I NTRODUCTI ON

D.1. SCOPE

This appendix lists expendable/durable supplies and materials you will need to operate and maintain the GSE. This listing is for informational purposes only and is not authority to requi sition the listed itens. These itens are authorized to you by CTA 50-970, Expendabl e/ Durable Itens (Except Medical, Class V, Repai r Parts, and Heral dic Itens), or CTA 8-100, Army Medi cal Department Expendabl e/ Durable Itens.

D. 2. EXPLANATI ON OF COLUMS

a. Col um (1) - Item Number. This number is assigned to the entry in the listing and is referenced in the narrative instructions to identify the material, for example, "Using i sopropyl al cohol (1, Table D-1).
b. Col um (2) - Level. This col um identifies the lowest level of maintenance that requi res the listed item

C - Oper at or/Crew
O- or gani zational Mai ntenance
F - Direct Support Mai ntenance
H - General Support Mai ntenance
c. Col um (3) - National Stock Number. This is the national stock number assigned to the item use it to request or requi sition the item
d. Col um (4) - Description. Indicates the Federal item name and, if required, a description to identify the item The last line for each itemindicates the Commercial and Government Entity Code (CAGEC) in parentheses followed by the part nunber.
e. Col um (5) - Unit of Measure (U/M). Indi cates the measure used in performing the actual mai ntenance function. This measure is expressed by a two-character al phabetical abbreviation (e.g., ea, in, pr). If the unit of measure differs from the unit of issue, requi sition the lowest unit of issue that will satisfy your requi rements.

Section II. EXPENDABLE/DURABLE SUPPLIES AND MATERI ALS LIST
Table D-1. Expendabl e/ Durable Supplies and Materials List

(1) Item Number	(2) Level	Nat i onal St ock Number	(4) Description	(5) U/ M
1	0	6810-01-136-7012	I sopropyl Al cohol (81348) TT-I-735, Grade A	gal
2	Del et ed			
3	Del et ed			
4	Del et ed			
5	F	6810-00-281-2785	Sol vent, Cl eani ng Met hyl et hyl Ket one (81348) $\text { T- M- } 261$	bt 1
6	0	7920-00-205-1711	$\begin{aligned} & \text { Cotton Wi pi ng Rags } \\ & \text { (58536) } \\ & \text { A- A-531 } \end{aligned}$	3 ea
7	0	7930-00-880-4454	$\begin{aligned} & \text { Det er gent } \\ & (81348) \\ & \text { P- D-41 } 0 \end{aligned}$	pt
8	F	7920-00-514-2417	Aci d Swabbing Brush (80244) H-B-643, Type II, Cl ass 1	ea
9	F	3439-00-522-2625	Sol der (81348) Q. S- 571 Composition, SN63	rl
10	0	6810-00-264-6548	$\begin{aligned} & \text { Techni cal G ycerol } \\ & \text { (81348) } \\ & \text { OG491 } \end{aligned}$	gal
11	Del et ed			
12	F	6145-00-577-3420	$\begin{aligned} & \text { Copper Wire } \\ & \text { (81348) } \\ & \text { Q W W 343, Type S, } \\ & 24 \text { AWG, Ti nned Soft } \end{aligned}$	25 ft

D. 2 Chanqe 2

Table D-1. Expendable/ Durable Supplies and Materials List - Continued

(1) Item Number	(2) Level	(3) National Stock Number	(4) Description	(5) U/M
13	F	6145-00-295-2810	El ectrical Wire (81349) M L-W 16878-4, E-20, 19 Strands, Teflon Insul ated, Col or Wite	10 ft
14	F	6145-00-808-4849	El ectrical Wre (81349) M L-W 16878-4, E-24, 19 Strands, Teflon Insul ated, Col or Wite	10 ft
15	F	6145-00-062-5700	Electrical Wre (81349) M L-W 16878-4, E- 22, 19 Strands, Teflon I nsul at ed, Col or Wite	10 ft
16	F	6145-00-519-2602	El ectrical Wire (81349) M L-W 16878-4, E-24, 19 Strands, Teflon I nsul at ed, Col or Bl ack	10 ft
17	F	6145-00-754-8057	$\begin{aligned} & \text { El ect ri cal Wre } \\ & \text { (} 81349 \text {) } \\ & \text { M L-W 16878-4, E- } 22, \\ & 19 \text { Strands, Tef I on } \\ & \text { I nsul at ed, Col or Bl ack } \end{aligned}$	10 ft
18	Del et ed			
19	F	5970-00-903-8733	$\begin{aligned} & \text { Insul at i on Sl eevi ng } \\ & \text { (81349) } \\ & \text { MR3053/ 5-203-C } \end{aligned}$	10 ft
20	F	NSNL	```Laci ng Tape (81349) M L-T-43435, Type I, Fini sh A, Si ze 3```	r
21	F	8010-00-133-5706	```Enamel, El ectrical - I nsul ating (81349) M L- E- 22118```	qt

Table D-1. Expendabl e/ Durable Supplies and Materials List - Continued

(1) It em Number	(2) Level	(3) Nat i onal Stock Number	(4) Description	(5) U/ M
22	F	9150-01-076-1817	Lubri cant, Braycote $\begin{aligned} & \text { (98308) } \\ & \text { 3L- 38RP } \end{aligned}$	pt
23	Del et ed			
24	Del et ed			
25	F	8030-00-081-2333	Seal ing Compound (80244) M L-S-22473, Grade C,	qt
26	F	8030-00-900-2373	```Seal ing Primer (80244) M L-S- 22473, Grade N, Form R```	qt
27	F	NSNL	Adhesi ve (80244) M L-A-46146, Type ।	qt
28	Del et ed			
29	F	8040-01-063-7509	Primer, Adhesi ve (80244) M L-A-46146, Type I	qt
30	F	8030-00-889-3534	```TefI on Tape (99742) M L-T-27730, 2 roil, l/4-inch wi de```	rl
31	F	6850-00-621-1820	Leak Detection Compound (81349) M L- L- 25567	bt 1
32	F	3439-00-255-4571	Fl ux, Sol dering (75297) SN6O, Core 66	$20 z$
33	F	8105-01-096-9528	Antistatic Pouch/ Bag (52942) M L- P- 81997, 12 inch x 18 inch	25

APPENDIX E
 WRING LIST

E-1. SCOPE

Tables E-1 and E-2 contain the wiring lists for the Fault Locator and the Remote Capabilities Tester respectively. The wiring lists contain wire interconnection data and wire size. Al so incl uded in the wiring list is the si gnal name for each wi re when applicable.

Table E-1. Wring List for Fault Locator

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AWG) } \end{aligned}$	Si gnal Nare
CHASSI S	J 2-2	20	GROUND
CHASSI S	S1-2NC	20	GROUND
CR1- CATH	K1- X1		*
CR1- ANODE	K1- X2		*
DS1-1	E25		+ 5 V
DS1-2	S9-I NO		GROUND
El	P1-24	22	A TRI G
El	J 1-B	22	A TRI G
E2	TP1	20	A TRI G
E3	P1-19	24	Q S TRI GGER-TA
E3	S1-IC	24	Q S TRI GGER-TA
E4	TP2	20	$\overline{\text { OS TRI G }}$
E5	J 1-f	22	COMPUTER WDRD
E5	P1-5	22	COMPUTER WORD
E6	TP 5	20	CMPTR WORD
E7	J 1-D	22	$\overline{\text { ENERGY VALI }}$

*Si gnal name is a function of switch position.

Table E-1. Wring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AWG) } \end{aligned}$	Si gnal Name
E7	P1-26	24	ENERGY VALID
E8	TP10	20	ENERGY VALID
E9	S1-2C	24	FLASHTUBE TRI GGER-TA
E10	TP11	20	FLASHTUBE TRI GGER-TA
E11	J 1-C	22	$\overline{\text { HVPS ON }}$
E12	TP14	20	$\overline{\text { HVPS ON }}$
E13	J 1-P	22	TURN-ON RESET
E14	TP15	20	$\overline{T O R}$
E15	TP4	20	METER
E16	S5A- C	20	METER
E17	TP 9	20	RETURN-TA
E17	TP16	20	RETURN-TA
E18	S5B-4	20	RETURN
E19	J $1-X$	22	+5 V-TA
E19	S5A-3	20	+5 V-TA
E20	S5B-3	20	RTN
E21	J 1-Y	22	+15 V-TA
E21	S5A-2	20	+15 V-TA
E22	S5B-2	20	RTN
E 23	J 1-a	22	BATTERY VOLTAGE
E23	S5A-1	20	BATTERY VOLTAGE
E 24	S5B-1	20	RTN
E25	PS1- V+	24	+5 V

Table E-1. Wring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (ANG) } \end{aligned}$	Si gnal Nare
E25	DS1-1		+5 V
E25	P1-11	22	+5 V
E25	J1-h	24	FIRE COMMAND (+ 5 V)
F1-1	S2-3	20	115 VAC
F1-2	PS1- AC+	22	115 VAC
J 1-A	TP16	22	SHI ELD RETURN
J 1-B	El	22	A- TRI G
J 1-C	S5A-6	22	450 V SENSE-TA
J 1-D	E7	22	ENERGY VALI D
J1-E	S5A- 7	24	ENERGY ERROR
J1-F	S5A-4	22	- 15 V-TA
J1-G	J 3	22	SI MMER SENSE
J1-H	TP6	22	EVENTS COUNT
J 1-J	TP8	22	HVPS ENABLE-TA
J 1-K	TP12	22	TIM NG GATE-TA
J 1-L	TP7	22	20 kHz CLOCK-TA
J 1-M	P1-23	22	HNPS I NHI BIT
J 1-P	E13	22	TURN- ON RESET
J1-R	S1-2C	24	FLASHTUBE TRI GGER-TA
J 1-S	P1-2	22	8000 METER-TA
J 1-T	K1- B1	22	FI RE REMDTE
J 1-U	TP3	22	RECEI VER START- TA

Table E-1. Wring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AMG) } \end{aligned}$	Si gnal Name
J 1-V	S5A- 5	22	PFN VOLTAGE SENSE-TA
J 1-W	TP13	22	$\overline{\text { PFN CHARGED }}$
J 1-X	E19	22	+5 V-TA
J 1-Y	E21	22	+15 V-TA
J1-a	E23	22	BATTERY VOLTAGE
J 1-b	K1-A1	22	$\overline{\text { FIRE REMDTE }}$
J 1-C	E11	22	HVPS ON
J 1-d	S1-1C	24	Q S TRI GGER-TA
J1-e	P1-25	22	OVERTEMPERATURE
J 1-f	E5	22	COMPUTER WORD
J 1-g	TP16	22	RETURN-TA
J1-h	E25	24	FIRE COMMAND (+5 V)
J 1-j	P1-1	22	VI DEO-TA- ENABLE
J 2-1	S2-2	20	115 VAC IN
J 2-2	Chassi s	20	RETURN
J 2-3	S2-5	20	115 VAC RTN
13	J 1-G	22	SI MMER SENSE
K1-A1	J 1-b	22	FIRE REMDTE
K1-A2	S1-1NC	24	GROUND
K1-A2	S8-1C	24	GROUND
K1- B1	J 1-T	22	FI RE REMDTE
K1- B2	S9-2C	22	BATTERY VOLTAGE
K1- C1	K1- X2	24	*

Table E-1. Wiring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AMG) } \end{aligned}$	Si gnal Name
K1-C1	S9-1C	24	*
K1-C2	P1-15	24	K1-C2 RELAY
K1- X1	CR1- CATH		*
K1- X1	S9-2NC	24	*
K1- X2	CR1- ANODE		*
K1- X2	K1-C1	24	*
M1-1	S5B- C	20	*
M1-2	S5C-C	20	*
P1-1	J1-j	22	VI DEO- TA- ENABLE
P1-2	J 1-S	22	8000 METER-TA
P1-3	S6-1NO	24	PRESET RNG SW
P1-4	S7-1	24	LAMP TEST
P1-5	E5	22	COMPUTER WORD
P1-6	S5A- 5	22	PFN VOLTAGE SENSE-TA
P1-7	S5B- 6	22	S5B-6 SW TCH
P1-8	S5C-5	22	S5C-5 SW TCH
P1-9	S5B- 5	22	S5B-5 SW TCH
P1-10	S5C-6	22	S5C-6 SW TCH
P1-11	E25	22	+5 V
P1-12	S5A-6	22	450 V SENSE-TA
P1-13	S5A-3	22	+5 V-TA
P1-14	S8-1C	24	GROUND

*Si gnal name is a function of switch position.

Table E-1. Wiring List for Fault Locator- Continued

From	To	Si ze (AMG)	Si gnal Nare
P1-15	K1-C2	24	K1-C2 RELAY
P1-19	E3	24	Q S TRI GGER- TA
P1-20	S5A-7	24	ENERGY ERROR
P1-21	S5B-7	22	S5B-7 SW TCH
P1-22	S8-1NC	24	HVPS I NHIBIT SW
P1-23	J 1-M	22	HVPS I NHI BI T
P1-24	E1	22	A TRI G
P1-25	J1-e	22	OVERTEMPERATURE
P1-26	E7	22	ENERGY VALI D
PS1- AC+	F1-2	22	115 VAC
PS1- AC-	S2-6	22	115 VAC RTN
PS1- V+	E25	24	+5 V
PS1- V-	S7-2	24	GROUND
S1-1C	E3	24	Q S TRI GGER-TA
S1-1C	J1-d	24	Q S TRI GGER- TA
S1-1NC	K1-A2	24	GROUND
S1-1NC	S1-2NC	24	GROUND
S1-1NC	TP16	24	RETURN
S1-2C	E9	24	FLASHTUBE TRI GGER-TA
S1-2C	J 1-R	24	FLASHTUBE TRI GGER-TA
S1-2NC	S1-1NC	24	GROUND
S1-2NC	Chassi s	20	GROUND

Table E-1. Wring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AWG) } \end{aligned}$	Si gnal Nare
S1-2NC	S6-1C	24	GROUND
S2-2	J 2-1	20	115 VAC IN
S2-3	F1-1	22	115 VAC
S2-5	J 2-3	20	115 VAC RTN
S2-6	PS1- AC-	22	115 VAC RTN
S5A- C	E16	20	METER
S5A-1	E23	20	BATTERY VOLTAGE
S5A-1	S9-2C	22	BATTERY VOLTAGE
S5A- 2	E21	20	+15 V-TA
S5A-3	E19	20	+5 V-TA
S5A- 3	P1-13	22	+5 V- TA
S5A-4	S5C-4	20	- 15 V - TA
S5A-4	J 1-F	22	- 15 V - TA
S5A- 5	P1-6	22	PFN VOLTAGE SENSE-TA
S5A-5	J 1-V	22	PFN VOLTAGE SENSE-TA
S5A-6	P1-12	22	450 V SENSE-TA
S5A-6	J 1-C	22	450 V SENSE-TA
S5A-7	P1-20	24	ENERGY ERROR
S5A- 7	J 1-E	24	ENERGY ERROR
S5B- C	M1-1	20	*
S5B-1	E24	20	RTN
S5B- 2	E22	20	RTN

*Si gnal name is a function of switch position.

Table E-1. Wiring List for Fault Locator - Continued

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AMG) } \end{aligned}$	Si gnal Name
S5B- 3	E 20	20	RTN
S5B-4	E18	20	RTN
S5B- 5	P1-9	22	S5B- 5 SW TCH
S5B- 6	P1-7	22	S5B- 6 SW TCH
S5B- 7	P1-21	22	S5B-7 SW TCH
S5C-C	M1-2	20	*
S5C-1	S5C-2	24	GROUND
S5C-2	S5C-1	24	GROUND
S5C-2	S5C-3	24	GROUND
S5C-3	S5C-2	24	GROUND
S5C-3	S5C-7	24	GROUND
S5C-4	S5A-4	20	- 15 V - TA
S5C-5	P1-8	22	S5C-5 SW TCH
S5C-6	P1-10	22	S5C-6 SW TCH
S5C-7	TP9	20	RTN
S5C-7	S5C-3	24	GROUND
S6-1C	S9-1NO	24	GROUND
S6-1C	S1-2NC	24	GROUND
S6-1NO	P1-3	24	PRESET RNG SW
S7-1	P1-4	24	LAMP TEST
S7-2	PS1- V-	24	GROUND
S7-2	TP9	24	RTN

*Si gnal name is a function of switch position.

Table E-1. Wiring List for Fault Locator - Continued

From	To	Si ze (AWG)	Si gnal Name
S8-1C	K1-A2	24	GROUND
S8-1C	P1-14	24	GROUND
S8-1NC	P1-22	24	HVPS I NHI Bl T SW
S9-1C	K1-C1	24	*
S9-1NO	S6-1C	24	GROUND
S9-1NO	DS1-2		GROUND
S9-2C	S5A-1	22	BATTERY VOLTAGE
S9-2C	K1-B2	22	BATTERY VOLTAGE
S9-2NC	K1- X1	24	*
TP1	E2	20	A TRI G
TP2	E4	20	Q S TRI GGER
TP3	J 1-U	22	RECEI VER START-TA
TP4	E15	20	METER
TP5	E6	20	CMPTR WDRD
TP6	J 1-H	22	EVENTS COUNT
TP7	J 1-L	22	20 kHz CLOCK-TA
TP8	J1-J	22	HVPS ENABLE-TA
TP9	S7-2	24	RTN
TP9	S5C-7	20	RTN
TP9	E17	20	RTN - TA
TP10	E8	20	ENERGY VALI D
TP11	E 10	20	FLASHTUBE TRI GGER-TA

*si gnal name is a function of switch position.

Table E-1. Wiring List for Fault Locator - Continued

From	To	Si ze (AMG)	Si gnal Name
TP12	J1-K	22	TI M NG GATE-TA
TP13	J1-W	22	PFN CHARGED
TP14	E12	20	HVPS ON
TP15	E14	20	TOR
TP16	E17	20	RETURN- TA
TP16	S1-1NC	24	RETURN
TP16	J1-A	22	SHI ELD RETURN
TP16	J1-g	22	RETURN- TA

*Si gnal nare is a function of switch position.

From	To	Si ze (AVG)	Si gnal Name
E1	J 1-R	22	FI ST RETI CLE BRI GHTNESS
E2	R2-3	22	FI ST RETI CLE BRI GHTNESS
E3	S2-3	22	*
E4	R2-1	22	*
E4	S1-Cl	22	*
J 1-A	S7-1	22	K_{0}
J 1-B	S7-2	22	K_{1}
J 1-C	S7-4	22	K_{2}
J 1-D	S6-1	22	K_{3}
J1-E	S6-2	22	K_{4}
J 1-F	S6-4	22	K_{5}
J 1-G	S5-1	22	K_{6}
J1-H	S5-2	22	K_{7}
J 1-J	S5-4	22	K_{8}
J 1-K	S1-C3	22	DC RTN
J 1-L	S3-1	22	RNG 1/ RNG 2
J 1-M	S1-11	22	FIST AZ ADJ
J 1-N	S1-9	22	FIST DES
J 1-P	S3-2	22	FIST SELECT
J 1-R	E1	22	FIST RETI CLE BRI GHTNESS
J 1-S	TP1	22	COMPUTER WORD

*signal name is a function of switch position.

From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AWG) } \end{aligned}$	Si gnal Name
J 1-T	TP2	22	COMPUTER WDRD
J 1-U	S2-2	22	FIRE CMD
J 1-W	S4-1	22	$\overline{\text { FIRE REMDTE }}$
J 1-Y	S4-4	22	FI RE REMDTE
J 1-Z	XDS2-1	22	+24 VDC
J1-a	TP3	22	COMPUTER WORD SHLD
S1-C1	E4	22	*
S1-C2	S1-C3	22	*
S1-C2	XDS2-2	22	*
S1-C3	J 1-K	22	DC RTN
S1-C3	S1-C2	22	*
S1-3	S4-4	22	*
S1-5	S1-6	22	*
S1-6	S1-5	22	*
S1-6	XDS1-1	22	*
S1-9	J 1-N	22	FIST $\overline{\text { DES }}$
S1-11	J 1-M	22	FIST $\overline{\text { AZ ADJ }}$
S2-2	J 1-U	22	FI RE CMD
S2-3	E3	22	*
S3-1	J 1-L	22	$\overline{\text { RNG 1/ RNG } 2}$
S3-2	J 1-P	22	$\overline{\text { FIST SELECT }}$
S3-2	XDS2-2	22	*
S4-1	J 1-W	22	FIRE REMDTE

*Si gnal name is a function of switch position.

Table E-2. Wiring List for Renote Capabilities Tester - Continued			
From	To	Si ze (AWG)	Si gnal Name
S4-2	XDS1-1	22	*
S4-4	S1-3	22	*
S4-4	J 1-Y	22	FI RE REMDTE
S4-5	XDS1-2	22	*
S5-C	XDS2-2	22	*
S5-C	S6-C	22	*
S5-1	J 1-G	22	K_{6}
S5-2	J 1-H	22	K_{7}
S5-4	J1-J	22	K_{8}
S6-C	S5- C	22	*
S6-C	S7-C	22	*
S6-1	J 1-D	22^{\prime}	K_{3}
S6-2	J 1-E	22	K_{4}
S6-4	J 1-F	22	K_{5}
S7-C	S6-C	22	*
S7-1	J 1-A	22	K_{0}
S7-2	J 1-B	22	K_{1}
S7-4	J 1-C	22	K_{2}
R2-1	E4	22	*
R2-1	XDS2-1	22	*
R2-1	R2-2	22	*
R2-2	R2-1	22	*

*si gnal name is a function of switch position.

Table E-2. Wring List for Remote Capabilities Tester - Continued				
From	To	$\begin{aligned} & \text { Si ze } \\ & \text { (AMG) } \end{aligned}$	Si gnal	Name
R2-3	E2	22	*	
TP 1	J 1-S	22	COMPUTER	WORD
TP2	J 1-T	22	COMPUTER	WDRD
TP3	J1- ${ }^{\text {a }}$	22	COMPUTER	WORD SHLD
XDS1-1	S1-6	22	*	
XDS1-1	S4-2	22	*	
XDS1-2	S4-5	22	*	
XDS1-2	XDS2-1	22	*	
XDS2-1	J 1-Z	22	+24 VDC	
XDS2-1	R2-1	22	*	
XDS2-1	XDS1-2	22	*	
XDS2-2	S1-C2	22	*	
XDS2-2	S3-2	22	*	
XDS2-2	S5-C	22	*	

*Si gnal name is a function of switch position.

APPEND X F
 TORQUE TABLES

F-1. SCOPE

Tables $\mathrm{F}-1$ and $\mathrm{F}-2$ contain torque val ues not otherwi se specified for Fault Locator and Remote Capabilities Tester respectively.

Table F-1. Fault Locator Torque Val ues

Si ze (inches - threads per inch)	Tor que (inch- pounds)
$0.086-56$	2 to 3
$0.112-40$	5 to 6
0.138-32	6 to 7
$0.164-32$	9 to 12
$0.190-32$	9 to 12
$0.250-28$	12 to 15
$0.250-32$	12 to 15
$0.375-32$	11 to 12
$0.469-32$	24 to 26
$0.500-24$	24 to 26
$0.625-24$	24 to 26
$1.062-18$	80 to 15
$1.250-18$	8 to 85

APPENDI X G ELECTRON C SHOP SHELTER AN ASM 146C SAFETY I NIERLOCK

G 1. SCOPE

Thi s appendix contai ns procedures for installing the 13250989 Safety Interlock to El ectronic Shop Shelter AN ASM 146C. Saf ety Interlock mai ntenance procedures are al so incl uded.

G2. SAFETY INTERLOCK I ISTALLATI ON

a. Saf ety Interlock Components. Inventory Safety Interlock components in accordance with Table G-1.

Table G1. Saf ety Interlock Components

Item	Nat i onal St ock Nunber	Part Number	Nomencl at ure	Quantity Requi red
1	5975-00-681-5778	702	Bushing, El ectrical	4
2	NSNL	11509159	Cabi net, El ectrical	1
3	6145-00-500-1193	S6CK3/ 16SRSJ	Cabl e, El ectrical Power	4 ft
4	NSNL	11509160	Cabi net, El ectrical	1
5	5975-00-038-2358	7707931	Conduit, Raceway	ar
6	5935-00-299-8035	C] 0248-001	Connect or, El ectrical Pl ug	1,
7	5935-00-295-5733	GL0520	Connect or, Recept acl e	1
8	NSNL	11509169	Decal, Warning	1
9	5325-00-007-0392	54G	Grommet, Non-metallic	1
10	5940-00-552-2019	BB- 884-10	Lug, Terminal	7
11	5310-00-146-7102	MS25082-C1	Nut, Pl ai n Hexagon	4
12	5935-00-302-6343	SK1010-1	Pl ug, Socket	1
13	5945-00-877-5047	AZ481-7-1	Rel ay, El ect romagnetic	1

Table G-1. Saf ety Interlock Components - Continued

Item	Nat i onal St ock Nunber	Part Nunber	Nomencl at ure	Quantity Requi red
14	5305-00-066-7327	MS24693C28	Screw, Machi ne	2
15	5305-00-013-3458	M535243-43	Screw, Machi ne	4
16	5305-00-281-5727	MS24615-27	Screw, Tapping	2
17	5305-00-883-0628	MS24617-21	Screw, Tapping	8
18	NSNL	11509168	Si gn, Warning	1
19	5970-00-815-1295	BEMS6001-8	Sl eeving, I nsul ation	ar
20	5365-00-826-2483	NAS42HT8-16	Spacer, Sl eeve	2
21	5975-00-098-0131	5703	Support	2
22	5930-00-501-4955	MS25089-3CR- RED	Switch, Push	1
23	5930-00-916-7900	M L- S- 8805/ 1	Switch, Sensitive	1
24	5310-00-809-8544	MS27183-7	Wesher, Fl at	4
25	6145-00-023-6781	M L-W 16878/ 1	W re , El ectrical	ar
26	6145-00-838-6612	M L-W 16878/ 1	W re , El ectrical	ar
27	6145-00-881-8177	M L-W 16878/ 1	W re , El ectrical	ar

b. Expendabl e/ Durable Supplies and Materials. Table G-2 i sts the expendable/durable supplies and materials required to install and maintain the Saf et y Int erlock.

Table G-2. Expendable/ Durable Supplies and Materials

It em Nunber	Level	Nati onal St ock Nunber	Description	U/M
1	F	$8010-00-079-2756$	Lacquer A-A-665 Primer T- P-1757	ar
3	F	Sol der SN63, Type WRMAP2	ar	

c. Tools and Test Equi pment. Table G-3is ists the tools and test equi pment requir red to install and maintai n the Saf ety Interlock.

Table G-3. Tool s and Test Equi pment

Tool or Test Equi prent Ref er ence Code	Mai nt enance Cat egory	Nomencl at ure	National Stock Number
1	F	Drill, l/4-inch	NSNL
2	F	Drill bit, l/8-inch	NSNL
3	F	Drill bit, l/4-inch	NSNL
4	F	Iron, El ectric Sol dering W TCP-L	3439-00-019-4384
5	F	Multimeter AN PSM 45 or Mal timeter AN PSM 6B	$\begin{aligned} & 6625-01-139-2512 \text { or } \\ & 6625-00-957-4374 \end{aligned}$
6	F	Tool Kit, Laser System Fi el d Mai ntenance	5180-01-048-8570

d. Safety I nterlock I nstallation (Figure G-1).

WARNING

Ensure facilities power is disconnected from power distribution panel before begi nni ng installation procedure. Hazardous voltages can cause shock, injury, or death.
(1) Set all AN/ ASM- 146C circuit breakers to OFF.
(2) On power di stribution panel (1), set MAIN circuit breaker to OFF.

NOTE

60-Hz si ngle-phase shelter power stub is connected to facilities power source line.
(3) Di sconnect $60-\mathrm{Hz}$ si ngl e-phase shelter cable from $60-\mathrm{Hz}$ si ngle-phase shelter power stub.
(4) On power distribution panel cover assembly, renove 14 screws and flat washers. Renove cover assenbly.
(5) Remove raceway fromtop of power di stribution panel (1) to dupl ex outlet (6).
(6) Renove el ectrical cabi net (3) cover by renoving four screws.
(7) Position el ectrical cabinet (3) per Fi gure G-1. Mark four hol es.
(8) Using 1/4-inch drill with $1 / 8$-inch drill bit (itens 1 and 2, Table G-3), drill four hol es.
(9) Measure 5 inches fromedge of raceway (2) to bottom center of raceway (5). Mark location.
(10) Measure $3 / 8$ inch from shelter si de wall to raceway (5). Mark Iocation.

CAUTION

Ensure raceway wi res are clear of drill bit path.
(11) Using 1/4-inch drill and $1 / 8$-inch drill bit (itens 1 and 2, Table G-3), drill one pilot hole.
(12) Using 1/4-inch drill and $1 / 4$-inch drill bit (itens 1 and 3, Table G-3), enl arge pilot hole to $1 / 4$ inch.
(13) Install one non-metallic grommet (item 9, Table G-1) into pilot hole drilled in raceway (5).

Fi gure G 1. Positioning of 11509160 El ectrical Cabi net
(14) Position one support (17) 1-3/4 inches di rectly bel ow hol e drilled in racemay (5). Mark location.
(15) Using 1/4-inch drill and $1 / 8$-inch drill bit (itens 1 and 2, Table G-3), drill one hole.
(16) Secure support (17) to shelter si de wall by installing tapping screw (16).
(17) Mbunt socket plug (13) to el ectrical cabi net (3) by installing two machi ne screws (18), flat washers (20), and plain hexagon nuts (19).
(18) Mbunt receptacle connect or (8) to el ectrical cabi net (3) by installing two nachi ne screws (9).
(19) Mbunt push switch (12) to el ectrical cabi net (3).
(20) Mbunt el ectromgnetic rel ay (10) to socket pl ug (13).

CAUTION
Do not torque tapping screws (11) more than 3 i nch- pounds.
(21) Mbunt el ectrical cabi net (3) to shel ter wall by installing four tapping screws (11). Torque tapping screws 2 to 3 inch-pounds.

NOTE
Ensure green ground wire is attached to plain hexagon nut securing el ectromannetic rel ay to socket plug.
(22) Route one red and one white el ectrical wire (itens 26 and 25 , Table G-1) from el ectrical cabi net (3) through raceway (5) to top of power di stribution panel (1).
(23) Pl ace one el ectrical bushing (15) into each end of 4-1/2-inch-I ong raceway conduit (4).

CAUTION

Ensure red and white el ectrical wires are placed within 4 -1/2-inch-I ong raceway conduit (4) bef ore it is secured to support (17).
(24) Secure 4-1/2-i nch-I ong raceway conduit (4) to support (17).
(25) Using sol der (itemB, Table G-2) and el ectric sol dering iron (item 4, Table G-3), sol der red electrical wire (item 26, Table G-1) to push switch terminals 3 and 4.

NOTE
Ensure all el ectrical wires bei ng connected to el ectromanetic rel ay (10) have terminal Iugs (14) installed.

Table G4. Electromanetic Rel ay Wiring List

Wre	Col or	From	To
M L-W 16878/ 1	Red	Push Switch, Terminal	El ect romagnetic Rel ay Terminal 6
M L-W 16878/ 1	Red	Push Switch, Terminal	Receptacle Connector (115 V ac Terminal)
M L-W 16878/ 1	Red	El ectromanetic Rel ay Terminal 2	El ect romannetic Rel ay, Terminal 1
M L-W 16878/ 1	White	Receptacle Connector, Terminal W	El ect romannetic Rel ay, Terminal 7
M L-W 16878/ 1	White	El ect romannetic Rel ay, Terminal 7	Power Distribution Panel, Grounding Terminal Strip
M L-W 16878/ 1	Green	Receptacle Connector, Terminal G	El ectromanetic Rel ay, Plain Hexagon Nut
M L-W 16878/ 1	Red	Receptacle Connector (115 V ac Terminal)	El ect romannetic Rel ay, Terminal 2

(26) Connect wi ring per Table G-4.
(27) Install raceway (5) from duplex outlet (6) to top of power distribution panel (I).
(28) Renove raceway from bottom of power distribution panel (1, Figure G-2) to bottom of HEATER 2 receptacle connector (2).
(29) Open shelter door.
(30) Remove el ectrical cabi net (4) cover by renoving four screws.
(31) Route two red el ectrical wi res (item 26, Table G-1) from power distribution panel (1) to HEATER 2 receptacle connector (2).
(32) Remove raceway end fitting.

MS 544192

Fi gure G 2. Positioning of 11509159 El ectrical Cabi net

Table G5. Sensitive Switch - Power Distribution Panel Wring List

Wre	Col or	From	To
M L-W 16878/1	Red	El ect romagnet i c Rel ay, Terminal 6	Sensi ti ve Switch, NORM OPEN
M L-W 16878/1	Red	Power Di stri buti on Panel SPARE Circuit Breaker	Sensitive Switch, COMMDN

(33) Connect sensitive switch (item 23, Table G-1) wi ring per Table G-5.
(34) Mbunt sensitive switch (8) to el ectrical cabi net (4) by installing two machi ne screws (9), sleeve spacers (12), flat washers (11), and plain hexagon nuts (10).
(35) Position el ectrical cabi net (4) per Fi gure G-2. Mark four hol es.

NOTE

Bef ore drilling hol es, ensure shelter door clears el ectrical cabi net (4) but makes contact and activates sensitive switch (8) contact blade.
(36) Using $1 / 4$-inch drill and $1 / 8$-inch drill bit (itens 1 and 2, Table G-3), drill four holes.

CAUTION

Do not torque tapping screws (13) more than 3 inch-pounds.
(37) Mbunt el ectrical cabi net (4) to shel ter wall using four tapping screws (13). Torque tapping screws 2 to 3 inch-pounds.
(38) Adj ust sensitive switch (8) contact bl ade as necessary to ensure contact with shelter door.
(39) Instal el ectrical cabi net (4) cover and secure with four screws.
(40) Measure 2-3/4 inches up fromtop center of el ectrical cabinet (4). Mark I ocation.
(41) Using 1/4-inch drill and $1 / 8$-inch drill bit (itens 1 and 2, Table G-3), drill one hole.
(42) Secure support (7) to shel ter rear wall by installing tapping screw (6).
(43) Pl ace one el ectrical bushing (5) into each end of 6-1/2-inch-I ong raceway conduit (3).

CAUTION

Ensure el ectrical wires are placed within 6 -1/2-inch-I ong raceway conduit (3) bef ore it is secured to support (7).
(44) Secure 6-1/2-inch-I ong raceway conduit (3) to support (7).
(45) Install el ectrical cabi net (3, Figure G-1) cover and secure with four screws.
(46) Install raceway from HEATER 2 receptacle connector (2, Fi gure G-2) to bottom of power distribution panel (1).
(47) Install power distribution panel cover assembly to power di stribution panel (1) and secure with 14 fl at washers and screws.
(48) Install WARN NG decal (item8, Table G-1) to el ectrical cabinet (3, Figure G-1) cover.
(49) Install WARNING sign (item 18, Table G-1) on exterior rear shelter wall.
e. El ectrical Power Cable Fabrication (Figure G-3).
(1) Separate and install el ectrical plug connector (1) onto el ectrical power cable (2).
(2) Wre green lead to green terminal nut.
(3) Wre white Iead to silver terminal nut.
(4) W're bl ack Iead to gol d terminal nut.
(5) Secure el ectrical pl ug connector (1) with five screws.
(6) Install insulation sl eeving (3) on el ectrical power cable (2).
(7) Install one terminal Iug (4) each on bl ack, green, and white el ectrical power cable wires.

1. ELECTRI CAL PLUG CONNECTOR (I TEM NO. 6, TABLE G-1)
2. ELECTRI CAL PONER CABLE (ITEM NO. 3, TABLE G-1)
3. I NSULATI ON SLEEVI NG (I TEM NO. 19, TABLE G-1)
4. TERM NAL LUG (ITEM NO. 10, TABLE G-1)

Figure G 3. El ectrical Power Cable Fabrication

G3. SAFETY INTERLOCK PRE-OPERATI ONLL CFECK

a. Frequency. Perform the Saf ety Interlock pre-operational check before any G VLLD mai ntenance tasks are initiated.
b. Pre-Operational Check. Verify that the Safety Interlock is operating by performing the following steps.
(1) Renove HP Power Suppl y rear cover.
(2) Connect el ectrical power cable (2, Fi qure G-3) to HP Power Supply (7, Fi gure G-1) in accordance with Table G-6.

Table G-6. Electrical Power Cable - HP Power Supply Wring List

From	To
El ectrical Power Cable, Green Lead	HP Power Supply, Ground
El ectrical Power Cable, Black Lead	HP Power Supply, AC/AC I nput Li ne
El ectrical Power Cable, White Lead	HP Power Supply, ACC/ AC I nput I ine

(3) Install HP Power Supply rear cover.
(4) Connect el ectrical power cable (2, Fi gure G-3) to el ectrical cabi net (3, Fi gure G-1) recept acle connect or (8).
(5) On power distribution panel (1), set MAIN circuit breaker to OFF.
(6) Cl ose shelter door.

NOTE

60- Hz si ngle-phase shelter power stub is connected to facilities power source line.
(7) Connect $60-\mathrm{Hz}$ single-phase shel ter power cable to $60-\mathrm{Hz}$ single-phase shel ter power stub.
(8) On power distribution panel (1), set MAIN circuit breaker to ON.
(9) Set all AN ASM 146C circuit breakers to ON.
(10) On power distribution panel (1), set SPARE circuit breaker to ON.
(11) On el ectrical cabi net (3), press push switch (12).
(12) On HP Power Supply (7), set \sim LINE switch to ON and adjust VOLTAGE COARSE and FINE controls to +24 V .
(13) Open shelter door. Verify that HP Power Supply (7) is not operating.
(14) Cl ose shelter door. Verify that HP Power Supply (7) is not operating.
(15) On el ectrical cabi net (3), press push switch (12). Verify that HP Power Supply (7) is operating.

G4. TROBLESHDOTING SAFETY INTERLOCK

WARNING

Ensure power distribution panel MAIN circuit breaker is set to OFF before begi nni ng troubl eshooting. Hazardous voltages can cause shock, injury, or death.

Isol ation of faulty Safety Interlock components is accomplished by performing a series of continuity checks using a multimeter (item 5, Table G-3). Troubl eshoot Saf ety Interlock components and wi ring in accordance wi th Figure 2-11 Repl ace faulty itens as requi red. Perform Saf ety Interlock pre-operational check per paragraph G-3 after any corrective mai ntenance.

JOHN A. WICKHAM, JR.
General, United States Army Chief of Staff

Official:
 ROBERT M. JOYCE

Major General, United States Army
The Adjutant General

Distribution:

To be distributed in accordance with DA Form 12-32, Section III, Organizational Maintenance requirements for Ground Laser Locator Designator(GLLD).

(

[^0]: * C-Crew Oper at or
 O. Or gani zat i onal

 F-Direct Support H-General D- Depot

